• Ground Engineering Logo
  • Investments Logo
  • Campus Solutions Logo
  • Omnicom Logo
  • BB Homes Logo
  • Kilpatrick Logo
  • Living Places Logo
  • Communities Logo
  • Balvac Logo
  • Painter Brothers Logo
  • BPH Logo
  • Jump to main content (accesskey s)
  • Jump to site navigation
  • Jump to site index (accesskey 3)
  • Jump to accessibility statement (accesskey 0)
  • How we work
    • Our Cultural Framework
    • Our story
    • What we do
      • Infrastructure Investments
      • Construction Services
      • Support Services
    • Understanding Balfour Beatty
    • Leadership
    • Build to Last
    • Right First Time
    • My Contribution
    • Public policy
    • Health and safety
    • Sustainability
    • Diversity and Inclusion
      • Affinity Networks
      • Creating an inclusive business
      • Right to Respect
    • Our Code of Ethics
      • Policies
      • Speak Up Helpline
    • Supply chain
      • Sustainable supply chain
        • Hydrotreated Vegetable Oil (HVO) FAQs
        • 2022 Greening the supply chain survey
      • Code of Ethics Supplier Standards
      • Health and safety in the supply chain
      • Important documents for suppliers and subcontractors
      • Supply chain partner payment
    • Fundraising and volunteering
  • Expertise
    • Meet our experts
    • Building Information Modelling (BIM)
      • Leading the industry
      • Key benefits
      • Adding value
      • Integrating teams
      • Helping our customers
      • Investing in BIM
    • Civil engineering
      • SCAPE Civil Engineering frameworks
      • SCAPE Civil Engineering
      • SCAPE Scotland
      • Delivering construction and civil engineering for the private sector
    • Construction
    • Ground engineering
      • Piling and foundations
      • Ground improvement
      • Retaining walls
      • Pennine equipment
      • Technical data sheets
        • Piling and foundations
        • Ground improvement
        • Retaining walls
        • Testing and analysis
        • Sustainability datasheets
    • Highways services and asset management
      • Local authority works
      • Major highways services
    • Mechanical and electrical engineering
    • Project finance
    • Rail engineering
      • Design and construction
        • Design
          • Track solutions
        • Switchgear manufacturing
          • Our products
          • Our services
        • Track supplies
          • Electrification
          • Railway sleepers and timbers
          • Serviceable materials
          • Rail sections
          • Industrial switches and crossings
          • Track smalls
      • Rail plant
        • Track geometry services
        • Road rail
        • Specialist and high output plant
      • Digital technology
        • Condition monitoring
          • Signalling conditioning monitoring
          • AssetView
          • Points condition monitoring
          • Structural inspection
        • Track and overhead line electrification
        • Gauging
          • ClearRoute
          • HyperRoute
          • LaserSweep
          • Structure Survey Editor
        • Software
          • Railway Electrification Designer
          • DesignRoute
          • StressRoute
          • TrackRoute
          • DataMap
          • Database Management Services
        • Measurement
          • LaserFlex
          • Track geometry
          • Overhead line monitoring
          • Data loggers
          • Specialist signalling services
          • TrueTrak
        • Omnicom Balfour Beatty
        • Training
      • Consultancy
    • Specialist services
      • Off-site Solutions
        • Our company
        • Modular construction methods
        • Off-site benefits
        • Digital engineering
        • Quality assurance, health and safety
      • Pipe fabrication and installation
      • Residential property management and development
      • Specialist structural repair and maintenance
        • Testing and analysis
      • Structural steelwork
      • Switchgear manufacturing
      • Biodiversity services
        • What we offer
      • Suction excavators
    • Utilities integration
  • Sectors
    • Transportation
      • Roads
      • Rail
      • Airports
    • Power and energy
      • Power generation, nuclear decommissioning
      • Transmission and distribution
      • Renewable energy
      • Gas
    • Water
    • Social infrastructure
      • Commercial
      • Defence
      • Education
      • Healthcare
      • Judicial
      • Public spaces
      • Residential housing
      • Student accommodation
  • Projects
    • Forder Valley Link Road, Plymouth
    • Regent Street Flyover, Leeds
    • Funicular Viaduct Strengthening, Cairngorm
    • A63 Castle Street Scheme, Hull
    • M60 Palatine Road Bridge project, Manchester
    • Victory Commons One, Dallas, TX
    • Swanswell Viaduct project, Coventry
    • Stockingfield Bridge, Glasgow
    • Burnshot Bridge, Kirkliston
    • East Rhyl Coastal Defence Scheme
    • Silver Jubilee Bridge, Runcorn
    • Surface Drainage Works, Inverness Airport
    • Glasgow Queen Street station redevelopment
    • Whitechapel Station, Elizabeth line, London
    • ElecLink Interconnector project, Kent
    • The Southern Gateway, Texas
    • I-635 East, Dallas, Texas
    • Woolwich Station, Elizabeth Line, London
    • M+ Museum, Hong Kong
    • University of Strathclyde Learning and Teaching facility, Glasgow
    • Forth Valley College’s Falkirk Campus, Scotland
    • Wokingham Major Highways Programme
    • NHS Louisa Jordan Hospital, Glasgow
    • A14 Cambridge to Huntingdon
    • Tuen Mun-Chek Lap Kok Link
    • HS2 main civil engineering works
    • M4 Smart Motorway
    • Los Angeles International Airport Automated People Mover
    • The Greater West Electrification
    • Hong Kong International Airport Terminal 2 Expansion Works
    • Old Oak Common station
    • Caltrain Peninsula Corridor Electrification Project, California
    • Central Rail System Alliance (CRSA)
    • Broadside, Manchester
    • Viking Link Interconnector Project, Lincolnshire
    • Littlebrook substation, Kent
    • Crossrail - Whitechapel and Liverpool Street Station Tunnels
    • North and South 400kV Overhead Line, Avonmouth
    • London Underground track renewals contract
    • North Bridge Refurbishment, Edinburgh
    • The Ocean Park Water World, Hong Kong
    • Sterling Natural Resource Center, California
    • Midland Metropolitan University Hospital
    • East Wick and Sweetwater
    • The Green Residential Housing Development
    • Springhead Bridge, Kent
    • Seahouses Pier, Northumbria
    • East Slope, University of Sussex
    • Dundee Regional Performance Centre for Sport
    • Camperdown Dock to Dundee Airport Flood Protection Scheme
    • Warrington West Train Station
    • Almondbank Flood Protection Scheme
    • Surf City Bridge, North Carolina
    • Hinkley Point C – Tunnelling and Marine Works
    • The Bobby Moore Academies
    • Advanced Manufacturing Centre, Hong Kong
    • Norton Bridge, Stafford
    • Manchester Engineering Campus Development (MECD)
    • Balfour Beatty CLG
    • Crossrail West Outer Section
    • A21 Tonbridge to Pembury dualling
    • Gateshead Energy Centre
    • Tadcaster bridge
    • Remodelling London Bridge station
    • Fylde peninsular coastal defence programme
    • Chamberlain Halls of Residence, University of Birmingham
    • North Ayrshire Community Hospital, Scotland
    • Holyrood Student Accommodation
    • Thames Tideway Tunnel
    • Westminster Bridge Road
    • Wind Farm Foundations, Ballybane, Cork, Ireland
    • Whitelee Wind Farm
    • The Green, Bradford
    • The Sainsbury Laboratory
    • Rhuddlan Castle
    • Queen Elizabeth Hospital, Birmingham
    • M4/M5 Smart Motorway
    • The National Graphene Institute
    • The Shard foundations
    • A3 Hindhead Tunnel
    • The Lighthouse
    • Project Hercules, MOD Lyneham
    • The Diamond, University of Sheffield
    • Thames Water - AMP6
    • Construction Industry Council Headquarters, Hong Kong
    • West Island metro line
    • Vineyard Surface Water Treatment Plant
    • Kirkcaldy Victoria Hospital, Scotland
    • Texas A&M University
    • Patapsco Wastewater Treatment Plant
    • Olympic Stadium transformation
    • North East Lincolnshire Partnership
    • Morpeth Flood Alleviation Scheme
    • M25 Motorway widening
    • London Power Tunnels
    • London Aquatics Centre
    • Institute of Technical Education, Singapore
    • Herefordshire Council Public Realm Services
    • Heathrow Airport Terminal 2 departure lounges
    • Gas Distribution Strategic Partnership
    • Chester gas network
    • Carl R. Darnall Army Medical Center Replacement
    • Blackfriars Station
    • Forth Bridge
    • Birchwood Pinch Point
    • Foundry Courtyard Student Accommodation, Glasgow
    • Vine Street, London
    • Southampton Highways Service Partnership
    • Monkton Flood Protection Scheme
    • Anglian Water @one Alliance
  • Sustainability
    • Beyond Net Zero Carbon
    • Generate Zero Waste
    • Positively Impact More Than 1 Million People
    • COP26
      • Towards a zero carbon construction site
        • Our Zero Carbon Construction Site Diary
      • Supply chain insights
      • Our Sustainability Showcase
      • My Contribution sustainability campaign
      • Innovative carbon reduction solutions
      • Carbon Conscious training
      • Low-carbon concrete
      • Tree planting
      • Our sustainability month in Hong Kong
    • Governance
    • Promoting sustainable outcomes
    • Materiality assessment
    • Sustainability in the UK
  • Health and safety
    • Health
      • Health in Construction Leadership Group
      • Mates in Mind
    • Safety
      • Our Golden Rules
      • Our Fatal Risks
      • Our safety innovations
      • Our safety timeline
  • Investors
    • Understanding Balfour Beatty
    • Results, reports and presentations
    • Financial calendar
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
      • 2017
      • 2016
      • 2015
    • News
      • RNS
    • Leadership
    • Directors' valuation of the Investments portfolio
    • Share price
      • Share Price
      • Chart
      • Calculator
      • Downloads
    • Shareholder centre
      • AGM
        • 2022
        • Archive
          • 2021
          • 2020
          • 2019
          • 2018
          • 2017
          • 2016
          • 2015
          • 2014
          • 2013
          • 2012
          • 2011
          • 2010
          • 2009
          • 2008 and earlier
      • Share dealing services
      • Shareholders' enquiries
      • Change of registrar
      • Unsolicited telephone calls
      • Identity theft
      • Preference shareholders
      • American Depositary Receipts
      • Analysts
      • Company advisers
      • FAQs
        • General
        • ADR
      • Share Purchase Transactions
      • Major Shareholders
    • Governance
      • Role of the Board
      • Board committees
      • Remuneration
      • Principles and policies
      • Tax strategy
      • Stakeholder engagement
      • Section 172 statements
    • Contacts
  • Media
    • News releases
    • Blogs
    • Podcasts
    • Videos
    • Images
    • Media contacts
    • Public policy
    • Sign up for news alerts
  • Careers
  • Contacts
  • Specialist brands
    • Ground Engineering Logo
    • Investments Logo
    • Campus Solutions Logo
    • Kilpatrick Logo
    • Living Places Logo
    • Communities Logo
    • BB Homes Logo
    • Omnicom Logo
    • Balvac Logo
    • Painter Brothers Logo
    • BPH Logo
Balfour Beatty plc logo Balfour Beatty plc logo
menu
search
Share price at 12:53 377.50p
  • How we work
  • Expertise
  • Sectors
  • Projects
  • Sustainability
  • Health and safety
  • Investors
  • Media
  • Careers
  • Contacts
Specialist brands
 
  • Manchester Engineering Campus Development (MECD)

    Manchester Engineering Campus Development (MECD)

    A flagship project to create a world-leading teaching, learning and research campus.

    The Manchester Engineering Campus Development (MECD) is the University of Manchester’s flagship project to develop the engineers and innovators of tomorrow, breeding collaboration and forward-thinking research techniques. Balfour Beatty was originally appointed, via The University of Manchester Construction Partnership Framework, to deliver this £300 million project in 2015 under a pre-construction services agreement, with the main contract then agreed in 2017.

    MECD is one of the largest, single construction projects ever undertaken by a higher education institution in the UK. It has transformed the way the University educates engineers in response to the needs of the fast-changing global economy. 

    It is home to four of the University’s engineering schools and two research institutes from the Faculty of Engineering and Physical Sciences.

    The buildings include extensive, modern teaching spaces that reflect the changing demands of students and staff for mobile and flexible learning. Cutting-edge technologies enable students across all disciplines to engage with the new modes of teaching. The research facilities are home to a community of 8,000 students, researchers, academics, and professional serviced staff, and will enable students to shape their own learning environment.

    Furthering the University's sustainability goals 

    To meet the University’s Environment and Sustainability goals, the project was the first to appoint a dedicated Environmental Sustainability Advisor. This helped to develop and drive the University’s comprehensive sustainability targets throughout the project’s lifecycle, including achieving a BREEAM Excellent rating, a new active travel hub and a green roof.

    Multiple buildings providing excellent teaching and research facilities  

    The development incorporates a number of existing and new buildings. The eight-storey 80,000sqm Engineering Building A, Engineering Building B, and the James Chadwick Building (on Upper Brook Street), refurbished and extended Grade II listed Oddfellows Hall and the York Street Building.

    MECD is home to purpose-designed blended lecture theatres, teaching laboratories, student workshops and a range of spaces to support the ambitious outreach and social engagement initiatives.

    The lightning bolt at the heart of Manchester

    As part of the scheme, the team designed and constructed a new high-voltage laboratory to house a lightning impulse generator which is capable of emitting a lightning strike of up 2 million volts.  

    To ensure everyone's safety, earthing, heating, and space requirements were discussed in detail with a specialist consultant. To achieve the required earthing readings, 20m-long earthing rods were installed deep into the ground and a faraday cage was installed into the fabric of the building to electrically isolate the lab from the building structure and fabric to safeguard the users.

    The team also built an electron microscopy (EM) centre with 22 electron microscopes to perform atomic resolution imaging and cell testing. The EM Suite is located in the south basement with the structure carefully designed to protect the microscopes from vibration from passing traffic and specialist rooms created to isolate them from noise and vibration from other building users.

    Giving something back

    Throughout the project there has been significant focus on spending locally, providing local employment, apprenticeships, and work experience opportunities.

    The project has provided excellent training opportunities which include Construction Academy pre-employment courses, 11 unpaid work experience placements and 23 careers focused activities delivered to University of Manchester students. We also delivered 34 STEM and industry specific careers activities to local schools, colleges, or employment groups.

    Keeping the local community at the heart of what we do, we contributed £20,000 to the University of Manchester Community Investment Fund, which enabled 50 local community groups to be supported, and raised £26,719 for charity. We also created:

    • 119 jobs for local, unemployed people
    • 116 new and sustained apprenticeships
    • 12 graduate roles
    • 5 paid internships
    • 100% guaranteed interviews for University of Manchester students
    • 10 mentoring opportunities

    MECD Building Services

    8,000

    students to benefit

    £26,719

    raised for charity

    7

    industry awards won

  • Thames Tideway Tunnel

    Thames Tideway Tunnel

    We are helping to construct the west section of the Thames Tideway Tunnel – London’s new ‘super sewer’.

    Running underneath the River Thames, the new tunnel will ensure the capital’s sewerage system is fit to support its projected population for at least the next 100 years. It will also tackle the issue of discharges of untreated sewage that currently enter the River Thames on a regular basis.

    Working in a three-way equal joint venture alongside Morgan Sindall and BAM Nuttall, we will deliver the £416 million, seven kilometre ‘West’ section of the overall 25km Thames Tideway Tunnel.

    From Acton in West London to Wandsworth in South West London, the project will incorporate seven separate work sites along the route. Works will include design, construction, commissioning and maintenance for a two to five year period following construction completion.

    This unique infrastructure project, which is the largest ever undertaken by the UK water industry, is another example of the part we are playing in 21st Century engineering.

    Thinking locally

    Using Building Information Modelling (BIM), we will test and simulate construction before works start on site for safe and efficient delivery. A large percentage of project materials will be transported down the river to ease road congestion, emissions and disruption throughout the duration of the project.

    The overall Thames Tideway Tunnel scheme will create more than 4,000 direct and indirect jobs at the peak of construction. Throughout the project, we will engage with local businesses and SMEs, providing local job opportunities including 50 new apprenticeships demonstrating our commitment to inspire and upskill a new generation.

    £416

    million project

    7km

    of tunnelling

    50

    new apprenticeships created

  • Forder Valley Link Road, Plymouth

    Forder Valley Link Road, Plymouth

    With nature in mind, we’ve built a key 1km link road with a 140-metre bridge between the A38 and the north of the city to alleviate traffic congestion and support growth in the region.

    Unlocking growth

    Over the next 15 years, 4,300 new homes and a new district development of shops and community leisure and health facilities is planned in the north of Plymouth. Key to unlocking this was investment in major new highways infrastructure including the £52 million funding for the Forder Valley Link Road project provided by Plymouth City Council, the Department for Transport Growth Deal and National Highways.

    Connecting communities

    Working on behalf of Plymouth City Council, we've built a one-kilometre link between William Prance Road in Derriford and the Forder Valley Road/Novorossiysk Road junction. Running along a new 140-metre bridge that we constructed across Bircham Valley, with a larger, relocated signalised junction at the Forder Valley Road/Novorossiysk Road intersection, the road is a key link between the A38 and the north of the city.

    The project, which was delivered via the SCAPE Civil Engineering framework, helps to alleviate traffic on the A386 Tavistock Road and Manadon Roundabout, providing an alternative route to the north of the city and key city locations such as Derriford Hospital, the University of St Mark and St John and the Plymouth Science Park. The new link also improves bus reliability on services to and from the north of the city and offers new and improved pedestrian and cycle facilities.

    Improvements have also been made at Forder Valley Roundabout to improve traffic flow and access for pedestrians and cyclists.

    Our proven expertise delivers value

    Drawing on our extensive experience of delivering complex highways infrastructure we were able to achieve approximately £2.37 million worth of value engineering cost savings, including:

    • Using 3D modelling to revise the earthworks design and strategy, resulting in 10,000m3 of top-soil being reused in landscape design to enhance biodiversity in the area and contributing to £1.375 million of the savings
    • Establishment of an on-site material testing lab with an integrated quality assurance solution to provide rapid classification of materials. This removed 9,247 lorry movements, resulting in a 3,223TCO2e reduction in carbon emissions – the equivalent of 717 people’s annual carbon emissions in the UK
    • A Novorossiyk Road plant crossing negating double handling of site excavated material when moving materials from one side of the road to the other
    • An alternative culvert alignment to enable flow of traffic through the works facilitated a single traffic switch that opened the route for a single phase. This safer approach reduced the construction period by 10 weeks, saved £600,000 and was much less disruptive
    Collaborating for success

    Utilities such as water, power and telecoms services needed to be diverted in preparation for our works commencing. The early engagement and collaboration that the SCAPE Civil Engineering framework facilitated, ensured that working alongside Plymouth City Council, South West Water, Western Power Distribution, Virgin Media, BT and Wales & West Utilities, were able to mitigate any potential issues whilst maintaining our schedule of works and project completion timescales.

    Leaving a lasting, positive legacy

    Essential to Plymouth City Council’s economic growth plan for the region and creating a fairer and greener Plymouth was ensuring that the Forder Valley Link Rd project left a lasting social and economic benefit to the community.

    To achieve this, we worked closely with Plymouth City Council, the local community and Building Plymouth to create a bespoke social value plan focused on the following key themes of the Plymouth Charter:

    • Spending locally
    • Upskilling locally
    • Employing locally

    As a result of the plan and our established approach to social value we have been able to:

    • Provide eight virtual work placements and participated in the Kickstart Prince’s Trust programme
    • Deliver job skills workshops and mentoring of long-term unemployed people age 50+
    • Work with Green Minds and Devon Wildlife Trust to provide volunteers to support with the planting of 14,500 trees across the city
    • Support the West Country River Trust with the creation of micro habitats
    • Spend 234 hours volunteering to create an outdoor space for a local primary school, create a natural style water channel culvert with otter walkways leading to an ecology pond as well as donating materials to a special education needs school
    • Create ‘dark corridors’ to provide a safe flight line and foraging for bats

    £2.37million

    value engineering savings

    £14.5million

    local spend

    13

    local people employed on the project

  • Regent Street Flyover, Leeds

    Regent Street Flyover, Leeds

    This £31 million project for Leeds City Council has increased the resilience of the Leeds Inner Ring Road, helped reduce traffic in the city centre and will support ongoing business growth and new investment in the area.

    As the first part of the Bishopgate Street, Armley Gyratory, Regent Street and City Square (BARC) programme of works, the dated and deteriorating Regent Street Flyover was demolished and replaced with a new structure with an expected lifespan of 120 years.

    Collaborating for success

    From the early stages of project development, we worked closely with Leeds City Council and our supply chain partners via the SCAPE Civil Engineering framework to develop plans for how we would deliver the works.

    This early involvement helped us to identify value engineering opportunities that included reusing some of the existing piles and pile caps, saving £1.5 million. It also allowed us to plan works in a way that minimised disruption for motorists by only having road closures at off-peak times and keeping two of the A64’s four lanes open at all other times, resulting in no significant traffic delays due to our works.

    The planning works undertaken at this stage were also crucial to the project diverting 99.67% of waste from landfill, including recycling the demolition arisings.

    Digital first delivery

    To help ensure the safe and smooth delivery of the project, we utilised a range of digital tools to improve project delivery, including:

    • Laser scanning the existing structures to help us to produce designs that could be efficiently constructed
    • Using AutoCAD to make sure that all bridge beam deliveries and self-propelled modular transporter and crane movements around site were completed safely and efficiently
    • Using a 4D animation to bring the project to life and explain the works to both internal and external stakeholders, including as part of site inductions and safety briefings
    • Monitoring pressures exerted on concrete formwork in real time to ensure high quality finishes were achieved and to help us to minimise disruption by completing concrete works in shorter timeframes
    • Providing Leeds City Council with a high-quality Building Information Model of the project to assist with future maintenance works
    Creating a positive, lasting legacy

    Maximising the social value created in the local community was a priority from the outset. As well as employing a number of graduates and apprentices across the project, we rolled out a virtual work experience programme for students across the country. Supporting NOVUS, a social enterprise providing education in prisons, we converted the content of our virtual work experience programme into presentations that are now being used to showcase the opportunities in the construction sector to young offenders.

    £31 million

    project value

    21

    local people employed

    200+

    hours of volunteering work

  • Funicular Viaduct Strengthening, Cairngorm

    Funicular Viaduct Strengthening, Cairngorm

    To reopen the UK’s highest railway, we’re delivering strengthening and refurbishment works to the 2km-long funicular which ascends the northern slope of Cairngorm.

    The funicular, which has been closed since 2018, takes passengers from 635 to 1097 metres Above Ordnance Datum. Upon re-opening, it will attract visitors to the Cairngorm National Park by providing access for all to one of the UK’s highest mountains. 

    Early collaboration shapes project delivery  

    Procuring the works via the SCAPE Scotland Civil Engineering framework, our customer Highlands and Islands Enterprise (HIE) gained early access to the skills and knowledge of Balfour Beatty and its supply chain partners.  

    This early collaboration gave experts the opportunity to shape how works would be completed. This included local supply chain partner McGowan Environmental Engineering, whose early involvement informed how works would be completed on the lower sections of the project that are made up of deep peat. Their early input was critical to ensuring the sensitive environment is protected at all times and that the safety challenges of working on a remote mountain side are well managed.  

    Protecting the local ecosystem 

    From the outset, we have considered local wildlife and the ground water dependent ecosystem of the mountain when planning our works, taking measures including: 

    • Working closely with specialist advisors to make sure our operations do not affect the various species living in the area 
    • Putting measures in place to prevent any contamination of watercourses, and regularly monitoring the condition of the watercourses throughout our works  
    Overcoming logistical challenges  

    Delivering materials and equipment to our work locations on the mountain side presented a logistical challenge due to the steep, varied terrain and the requirement to minimise our impact on the local environment.  

    To overcome this, materials and equipment for the works on the upper slopes are delivered by helicopter. This minimises the ground disturbance caused by setting down materials and equipment and removes the associated safety risks of transporting materials and equipment across rough ground conditions as well as the removing the requirement for a haul road to be constructed. 

    Removing the need to create access for conventional excavators and minimising the risks presented by the ground conditions, we also used specialist spider excavators without tracks to operate on the steep slopes of the upper section of works. 

     

  • A63 Castle Street Scheme, Hull

    A63 Castle Street Scheme, Hull

    This £355 million improvement scheme will relieve congestion for 47,000 road users and improve access to the Port of Hull.

    Beginning work on site in 2020, our works include lowering the level of the A63 at the Mytongate junction to create a split-level junction, widening the eastbound carriageway to three lanes and installing a new footbridge to create a safer route for pedestrians and cyclists crossing the A63.

    Uncovering Hull’s history

    To make way for the new slip road off the Mytongate Roundabout required the largest scientific excavation of a post-medieval burial ground in Northern England, with a team of 90 archaeologists sensitively excavating an estimated 10,000 bodies which were subsequently re-buried within the boundaries of the burial ground.

    Due to the size, scale and significance of the archaeological works, they were featured on the BBC’s Digging for Britain series. The show's host, Professor Alice Roberts, visited the burial ground to meet the team and go behind the scenes to see our on-site laboratories and find out more about the wealth of information we had uncovered about the history of the local area.

    Reducing our carbon footprint

    Working towards our ambition to go beyond net zero carbon by 2040, we successfully used electric mini diggers on this project. Powered by a Prolectric ProPower Solar Generator, the electric diggers reduced our carbon output by 25 tonnes and resulted in better air quality in the tent used during the archaeological works.

    A local first legacy

    To create a meaningful, lasting legacy for the local community, we have been helping schools, colleges, the local university and local charities by:

    • Delivering activities for nearly 4,000 local students to encourage them to take up a career in Science, Technology, Engineering or Mathematics (STEM)
    • Participating in a Women in Manufacturing and Engineering pilot to encourage more women into STEM careers
    • Recruiting apprentices from the local area
    • Raising money for charities including Macmillan Cancer Support, Anthony Nolan and blood cancer charity DKMS
    • Donating items to a local foodbank and women’s refuge as well as materials and staff time for an episode of the BBC’s DIY SOS.


    19th century burial ground

    10,000 burials excavated

    90 archaeologists

  • M60 Palatine Road Bridge project, Manchester

    M60 Palatine Road Bridge project, Manchester

    Balvac is delivering critical concrete repair and impressed current cathodic protection works to the M60 Palatine Road Bridge, which carries 80,000 vehicles per day over the River Mersey in Manchester.

    A routine inspection and assessment concluded the concrete pier crossheads supporting the bridge deck, were under pressure. Balvac worked collaboratively with National Highways to develop a propping solution to relieve both the dead and live loads on the bridge decks to help facilitate the repair and the strengthening of 15 pier crossheads.

    The team successfully repaired seven crossheads using a combination of flowable, sprayed and hand-placed repair materials, as well as using a titanium mesh anode cathodic protection system. To protect the reinforced steel within non-accessible areas of the crossheads, we installed daisy chain anodes through 16m-long holes cored in centre of the crosshead to a +/- 50mm tolerance. 

    Time and cost saving through innovative trials

    We worked collaboratively to develop suspended scaffold access which was part suspended from the deck structure and part supported through the crosshead pier. This innovative approach mitigated the need for cofferdams to be installed within the River Mersey, eliminating any associated risks, improving safety as well as providing a cost saving across the project.

    Balvac worked closely with the principal designer to establish the condition of the remaining eight piers by undertaking trials to demonstrate the dimensional accuracy of concrete removal using hydro demolition. These trials provided confidence for the innovative unpropped solution to be implemented, providing time and cost savings.

    The site is located east of the River Mersey and sits within an Environment Agency flood basin. To ensure minimal disruption, all temporary works including the site office and welfare facilities were designed to enable use of the basin during extreme weather conditions.

    Social value

    Balvac's project team, along with supply chain partners, helped to raise money for a local youth group to purchase crafting equipment and games for young people in Northenden.

    15

    pier crossheads

  • Victory Commons One, Dallas, TX

    Victory Commons One, Dallas, TX

    Victory Commons One is part of an urban campus in the heart of the city and the first of a three-building development in downtown Dallas.

    This $105 million project involves the construction of a 386,306 square foot 12-storey (14-story with subgrade level G0 and the mechanical penthouse at the top) Class A office building, ground-level retail and personal service tower. The 429,810 square foot seven-storey parking structure features 1,102-parking spaces.

    Innovative design

    Thermal-Adaptive Glass automatically adjusts its tint level for climate, comfort and clear views. This innovative design solution means more natural light will reach every floor. UV Air Treatment systems were also installed in each elevator cab to reduce indoor airborne pathogens and micro-organisms including mold, bacteria and viruses.

    Impressive facilities

    Victory Commons One incorporates a refreshing number of opportunities to engage with the outdoors. From a Sky Garden that takes work breaks to the next level, showcasing great views from the seventh floor to a one-acre park offering endless fresh air. Uniquely situated in the centre of Dallas, the facility has over 200 local restaurants, bars and entertainment attractions just off the building’s doorstep, as well as direct access to Dallas Area Rapid Transit at Victory station.  

    Performance history

    Balfour Beatty is the partner of choice for the customer, Hillwood Development. Our long-standing and successful partnership has delivered numerous projects, including the 14-storey Perot Museum Nature of Science building.

    Safe and sustainable solutions

    Critical to safe operations was our partnership with the American Airlines Center to coordinate our daily operations around their year-round premiere events schedule as they are home to the Dallas Mavericks, the Dallas Stars and numerous high-profile concert events. Balfour Beatty also worked hand-in-hand with the City of Dallas and Dallas County to ensure the safety of visitors accessing the adjacent temporary COVID-19 testing facility.

    Victory Commons One was designed and built using strategies aimed at improving performance across all the metrics that matter most such as state-of-the-art technology, tenant wellbeing with enhanced wellness features inside and out, energy savings and water efficiency. The facility received a LEED Silver Certification in April 2022, an internationally recognised green building certification and has also received Wire Certified Gold and the Highest Level Walk Score.

    4,000square feet

    tenant lounge

    5,000square feet

    Sky Garden

    12,962square feet

    of restaurant space

  • Swanswell Viaduct project, Coventry

    Swanswell Viaduct project, Coventry

    As part of the Coventry Ring Road Improvement scheme, our Balvac team strengthened and refurbished Swanswell Viaduct, reducing the ongoing maintenance costs and extending the lifespan of this critical asset.

    Commissioned through the SCAPE Civil Engineering framework, Balvac was engaged at pre-construction stage to develop the designs to upgrade the original 1960’s concrete cladding panels and edge beams with an enhanced stringcourse detail, using both pre-cast units and in situ reinforced concrete.  

    After many years of heavy use and exposure to the elements, the original post-tensioned concrete box beam structure required extensive refurbishment. We installed a new modern Trespa cladding panel system, a new vehicle restraint system, complying to current standards, along with bridge deck waterproofing and re-surfacing works.

    Other works involved:

    • Removal of existing ‘white spar’ fascia panels and reinforced concrete edge beam
    • Replacement of bridge deck and sub-surface drainage including connections into surface level drainage network
    Positively impacting the local community

    Balvac's project team worked closely with the local community and two social enterprises to generate social value and leave a positive legacy. This included a summer placement for a local student and held sessions on CV writing and interview techniques for The Princes Trust in Coventry. In addition, the team donated food and volunteered at Coventry Foodbank, who provide emergency food for people in crisis.  

    The team also diverted over 99.8% of 610 tonnes of waste materials from landfill.

    99.8%

    of waste material diverted from landfill

    2

    local social enterprises supported

  • Stockingfield Bridge, Glasgow

    Stockingfield Bridge, Glasgow

    We’ve constructed a new £13.7m bridge across the Forth & Clyde Canal to connect three communities and provide access routes to the west end and city centre.

    Awarded via the SCAPE Scotland Civil Engineering framework, Scottish Canals appointed Balfour Beatty to construct a new 3.5m wide bridge. The bridge comprising of two single span decks suspended on a network of cables is connected to a single inclined pylon situated on the east bank of the canal.

    The new curved footbridge allows pedestrians and cyclists to cross the canal at towpath level rather than having to negotiate the footways below the existing aqueduct.

    The new bridge also offers an integrated observation deck and landscaping to provide exposure to the canal's waterfront and green spaces. To help increase canal usage, we developed new public recreational places featuring art installations.

    Fostering positive working relationships

    A key challenge of the project was to keep the waterways as accessible as possible to all canal users, whether they were using the towpath or the actual canal. Our teams collaborated with the local Rotary Club on a regular basis to ensure that disruption was minimised, and canal users were well informed in advance of any work taking place. This aided in keeping the local community informed and fostering positive working relationships with all key parties.

    Connecting communities

    For the first time since the waterway opened in 1790, the new bridge connects the city's villages of Maryhill, Gilshochill, and Ruchill. It will also serve as the final link in the canal towpath, finishing National Cycle Network Route 754, connecting Glasgow and Edinburgh through the Falkirk Wheel. The construction of the Stockingfield foot and cycle bridge will significantly encourage physical activities such as cycling, walking and jogging along the Forth & Clyde Canal whilst opening routes to the city's west end leisure facilities and employment prospects for local people.

    Michael Matheson, Cabinet Secretary for Transport, Infrastructure and Connectivity echoed his enthusiasm and shared his thoughts, “this new bridge will offer people living and visiting North Glasgow better walking, wheeling and cycling connectivity than before. The Stockingfield Bridge will make it even easier for the communities of Maryhill, Ruchill and Gilshochill to get around locally in a sustainable way, as well as accessing the fantastic nature reserve at Possil Marsh. At the same time, it completes a missing link in the National Cycle Network Route 754, which offers a traffic-free route between Glasgow and Edinburgh via the spectacular Falkirk Wheel.”

    3

    communities connected

    82%

    SME spend 

    89%

    local Labour 

  • Burnshot Bridge, Kirkliston

    Burnshot Bridge, Kirkliston

    We’ve built a new state-of-the-art, stainless steel reinforced crossing restoring a vital transport link in Scotland.

    Constructed in 1964, Burnshot Bridge provided a vital link on the A90 corridor from Edinburgh to the Forth Bridge Road. After many years of use, the bridge was closed to traffic in 2016 due to deteriorating joints and structural integrity issues to the bridge deck.

    Procured via the SCAPE Scotland Civil Engineering framework, The City of Edinburgh Council appointed Balfour Beatty to carry out the demolition of the existing infrastructure and the construction of a new bridge. More than 200 engineers and designers worked on the complex project to design and build the new 33m wide state-of-the-art stainless-steel reinforced bridge. 

    After the original bridge was demolished in early 2017, a temporary pedestrian bridge was initially installed to support existing services and to ensure the community remained connected to the local transport network whilst the new bridge was being constructed.

    Our scope of works included:

    • Site clearance
    • New foundations and superstructure for the new bridge
    • Reinforced earth abutments
    • 17 33m single span bridge beams supporting a reinforced bridge deck containing stainless steel reinforcement
    • Drainage works
    • Road pavement
    • Road restraint systems
    • Signs and road markings
    • Landscaping
    Collaborative working

    Through early engagement and collaborative working between the project team and our supply chain, we were able minimise risks and overcome geotechnical challenges at the site where the bridge is situated.

    The team hosted regular engagement events at the local library and developed a 3D model to help explain the project and what our works involved to local residents. This helped our team build good relations within the local community and kept them well informed of any disruption and our progress.

    Improving journeys for travellers for years to come

    The new bridge has an expected 120-year lifespan and was designed with input from active travel groups to improve the cycling and pedestrian experience by including a segregated eastbound cycle lane and shared-use path.

    Positively impacting the local community

    Throughout the project, we worked closely with the local community and created a bespoke community benefits plan with the main objectives of:

    • Increasing community engagement through local STEM events with primary and secondary school pupils, volunteering and fundraising
    • Reducing our C02 emissions by 50% using innovative plant and equipment such as hybrid generators
    • Providing employment opportunities for apprentices and graduates

    Additionally, the project team hosted two work experience placements for HNC Civil Engineering students from Fife College. During their placements, both students attained their Silver Industrial Cadet Awards.

    97.79 %

    waste Diverted from Landfill

    £0.58

    added Social Value per £1 spend

    99%

    local Labour

  • East Rhyl Coastal Defence Scheme

    East Rhyl Coastal Defence Scheme

    We’ve improved vital coastal flood defences at East Rhyl to protect 693 properties from coastal flooding.

    Working on behalf of Denbighshire County Council, we’ve installed coastal flood defences in the seaside town of Rhyl on the coast of Denbighshire, North Wales. East Rhyl was protected by a number of historical coastal flood defences that were estimated to provide a 1:50- year standard of protection. These have overtopped in recent years causing extensive and prolonged flooding in the area.

    Awarded via the SCAPE Civil Engineering framework we delivered the design and construction of a rock revetment structure immediately in front of the existing sea wall, improved approximately 600 metres of the current sea wall and promenade at Splash Point as well as replenishing the beach to provide a 1 in 200-year standard of protection.

    Ensuring project viability

    The primary source of flooding in the area is wave overtopping. Flood modelling showed that wave overtopping at East Rhyl was set to increase due to:

    • The reducing effectiveness of existing defences
    • Climate change resulting in rising sea levels and an increase in the frequency of storms
    • The lowering of beach levels bringing larger nearshore waves

    Working in close partnership with Denbighshire County Council and our designers we identified several suitable options that would provide the required protection for the area as well as meeting the Welsh Government’s Flood and Coastal Risk Management Strategy requirements.

    Our proven coastal expertise adds value

    Drawing on our extensive experience of delivering coastal defence projects, we identified that rock armour would provide the most cost-effective method of coastal protection at East Rhyl.

    With a 1 in 200-year standard of protection against storms and the impacts of climate change, rock armour is suitable for highly exposed areas. It is relatively inexpensive and highly effective at absorbing and deflecting the energy of the waves. The gaps between the rocks slow down the flow of the water meaning it has less erosive energy and the risk of wave overtopping is substantially reduced.

    62% of the 128,000 tonnes of rock armour that was needed to complete the project was all taken from local quarries ensuring we supported the local economy.

    Underwater heritage

    Rich in marine archaeology, the East Rhyl coastline contains ancient fish traps, a submerged ancient forest and shipwreck that all provide a glimpse into the distant past. It is also near Liverpool Bay which is a Special Protection Area which is classified for the protection of:

    • Red-throated diver
    • Common scoter
    • Little gull
    • Common Tern
    • Little Tern
    • Internationally important waterbird assemblage

    Early engagement with local universities and environmental institutions enabled us to understand the ecological sensitivities in the area and incorporate mitigation measures into the environmental impact assessment to protect and preserve the historic underwater heritage.

    693

    properties will be protected from the risk of sea flooding and coastal erosion

    £10 +Million

    of added value

  • Silver Jubilee Bridge, Runcorn

    Silver Jubilee Bridge, Runcorn

    Originally opened in 1961, the Silver Jubilee Bridge is one of largest steel arch bridges in the UK and is regularly exposed to traffic volumes of over 80,000 vehicles per day.

    Balvac was first appointed by Halton Borough Council to deliver their Bridge Maintenance Partnership Contract from 2009 to 2015. Since 2015, Balvac has successfully negotiated over £20 million of ongoing major maintenance works for the bridge via the SCAPE Civil Engineering framework. Funding for the maintenance of the bridge was initially awarded by the Department of Transport and subsequently via the Liverpool City Region Combined Authority.

    Successfully delivering maintenance

    The bridge was closed from October 2017 to February 2021 to deliver several packages of works including repainting the entire top arch for the first time since the bridge opened in 1961. We also reconfigured the running lanes and created a new dedicated cycle lane. In addition, we waterproofed and applied an innovative, thin surface material utilising polymer modified bitumen to keep the dead load on the bridge deck within the allowed design tolerances.

    We also successfully trialled a complete replacement of a locked coil hanger cable from arch to deck, providing Halton Borough Council with the confidence that future cable replacement works would be feasible whilst the bridge remains operational.

    Overcoming challenges

    As part of the original works, Balvac were responsible for completing structural concrete repairs and cathodic protection to the bridge deck soffit and abutments, steelwork repainting, steelwork strengthening, parapet replacement and bridge deck refurbishment.

    The combination of high traffic volumes across the bridge, four narrow running lanes and no central reservation, presented significant traffic management and access challenges during maintenance works undertaken in the years leading up to the full closure.

    Through the strong collaborative relationship built with the council, we were able to combine work packages and share management and logistical resources. This approach minimised disruption to the public and delivered savings of over £700,000.

    In 2022, the project secured two accolades, the ICE North West ‘Constructability Award’ at the ICE North West Awards and the New Life > £5 million’ award at Bridges. Commenting on the Bridge’s award, the judges said “the scheme demonstrated high-quality risk management and structural engineering in a complex environment.

    £40 million

    overall value of works completed since 2009

    25,000m2

    of steelwork blast cleaned and repainted

    4,000m2

    of reinforced concrete bridge deck protected with an innovative cathodic protection system

  • Surface Drainage Works, Inverness Airport

    Surface Drainage Works, Inverness Airport

    Helping one of Scotland's key airports to remain compliant with Scottish Environment Protection Agency (SEPA) requirements, we have delivered improvements and upgrades to the primary surface water drainage swales at Inverness Airport.

    Due to historic drainage issues at the airport, we were commissioned to carry out surface treatment and drainage works by Highlands and Islands Airport Limited (HIAL) via the SCAPE Scotland Civil Engineering framework.

    Scope of works

    Swales are the primary collection points for surface water drainage at the airport. Works delivered to improve and upgrade the existing swales included:

    • Installing an impermeable liner in 10 existing swales to mitigate ground water contamination
    • Widening of two swales upstream of the north reed bed to provide additional storage from water re-circulated from the reed bed treatment facility
    • The diversion of two existing rising mains used to recirculate run-off requiring further treatment
    • Installation of new headwalls and associated drain connections as well as a new three-pipe culvert crossing between the two widened swales
    • Reuse of excavated material by re-profiling adjacent landscaped areas
    • Working closely with SEPA to make sure legislative requirements were met.
    Delivering biodiversity net gains

    The airport is in an environmentally sensitive area that is rich in wildlife and ecosystems. As part of our offering on all SCAPE Scotland Civil Engineering projects, we assessed the impact of works on the biodiversity of the area and offered options to create a biodiversity net gain.

    Our initial assessment identified that without mitigation, an 8.5% biodiversity loss would occur as a result of the project. Working collaboratively with Highlands and Islands Airports and NatureScot, we clearly set out how to avoid this and how to create a 5% biodiversity net gain, with the net gain being achieved through using a bespoke seed mix of plants genetically suited to the local environment.

    Positive social impact

    With HIAL’s contracted requirement to benefit the local community – both during and after construction - and our own well-established approach to generating social value, our project team designed a bespoke social impact action plan. The plan focussed on key areas including:

    • Local regional spend
    • Creation of local job opportunities
    • Supporting young people into work
    • Offering meaningful work experience placements
    • Volunteering to support local community projects.

    As a result of the plan and our well-established approach to generating social value we have been able to:

    • Generate a 33% social value add for every £1 spent
    • Ensure 100% of our spend was with SME’s
    • Employ 97% of our workforce within 40 miles of the project
    • Receive a Considerate Constructors scheme score of 42, earning a certificate of excellence for our focus on the local community and high standards delivered by our project team
    • Create 7 weeks of work experience placements
    • Provide 12 hours of support for young people looking to progress into employment

    Alongside this, our teams also looked for innovative ways to ensure we reduced our environmental impact and carbon emissions. Utilising a hybrid solar pod generator to power one of the remote site compounds situated between the airport runway and taxiway, we saved 21.2 tonnes of C02, 7,678 litres of diesel and reduced noise pollution.

    Collaborating for success

    Working in a highly regulated and controlled aviation environment required meticulous planning to ensure safe, compliant airside working practices were followed.

    Collaboration and regular communication with airport operations, air traffic control, Bristow’s Search and Rescue (SAR), and the Scottish Air Ambulance was also vital to ensuring the airport and vital emergency services remained operational at all times.

    33%

    social value generated

    100%

    spend with SME’s

    97%

    local labour

  • Glasgow Queen Street station redevelopment

    Glasgow Queen Street station redevelopment

    The redevelopment of Glasgow’s Queen Street station has significantly improved the experience of the 17 million passengers using the station each year. It has future-proofed the station for the predicted 40% increase in passengers over the next 10-15 years.

    Improving Scotland’s rail network

    The project is part of a wider programme of works happening across central Scotland’s rail network, the Edinburgh – Glasgow Improvement Programme (EGIP). The programme is being delivered by Network Rail and the Scottish Government to improve services and facilities across the area.

    Working alongside our customer, Network Rail, we’ve made significant improvements to Queen Street station to tackle potential overcrowding and improve facilities. The redevelopment has made it easier for people to navigate throughout the station through the £120 million expansion to extend the platform and concourse, allowing more space for passengers. New facilities were also added to improve visitor’s experience including accessible toilets, a luggage area, ticketing office and space for retail.

    Maintaining operations

    A significant challenge of the project was the scale, complexity, and ambition of the redevelopment   along with the need to keep the station open for around 47,000 passengers who use it each day. We did this by ensuring work was carried out behind fully encapsulated scaffolds and protective hoardings, using night shifts as required. This also helped reduce dust and noise pollution.

    To maintain the safe and continuous operation of the station, works were phased. Phase one included the significant demolition of some of the existing buildings, including the front of the station. Next, the team were tasked with constructing the newly extended concourse and a new basement, this then allowed the erection of the steel frame to enable the platforms to be extended. The 26 metre platform extension means the station can now accommodate longer trains and a higher footfall.

    Utilising Building Information Modelling (BIM)

    BIM was used to improve project delivery. The team utilised it to undertake a full clash detection and co-ordination review as well as for 4D planning to review work progress. A virtual walkthrough was also used and BIM 360 field allowed snags to be flagged, site diaries to be kept and quality control to be maintained.

    £120million

    expansion

    26metre

    platform extension

  • Whitechapel Station, Elizabeth line, London

    Whitechapel Station, Elizabeth line, London

    The new Whitechapel station is a key interchange hub on the Elizabeth line, serving thousands of passengers per day.

    It is one of ten new stations constructed for the Elizabeth line (constructed as part of the Crossrail project) and for the first time, provides step-free access which will benefit visitors to the internationally renowned Royal London Hospital situated just across the road.

    The new station means that Whitechapel will be a short 3-minute train ride away from Canary Wharf, a 7-minute ride to Tottenham Court road and a 36-minute ride to Heathrow when the Elizabeth line opens.

    Impressive engineering

    This project was delivered by a joint venture consisting of Balfour Beatty, Morgan Sindall and VINCI Construction (BBMV). Works included the new station bridge concourse and a new ticket hall, behind a retained Victorian façade. In addition, the platforms of the existing Hammersmith & City and District lines were also upgraded.

    Along with the main station works, the contract also involved constructing new shafts and platforms for the Elizabeth line tunnels, as well as the related architecture and mechanical and electrical infrastructure. Piling works were carried out in-house by Balfour Beatty Ground Engineering alongside Bachy Soletanche, while the mechanical and electrical work was installed by Balfour Beatty Kilpatrick.

    Sustainability on track

    The new station has been awarded a BREEAM ‘Very Good’ certificate, reflecting the strong emphasis on sustainability throughout its construction and into its operations.

    Sustainable solutions implemented on the new station include low energy light bulbs and wood and aggregates from sustainable sources. The escalators also switch to a low energy mode and reduce their speed during quiet times to reduce their energy use. A green roof was also installed and planted with sedum seeds, to help improve air quality and biodiversity in the area.

    A catalyst for regeneration

    The arrival of the Elizabeth line is part of a masterplan to regenerate the Whitechapel area, through the delivery of 3,500 new homes and 5,000 new jobs.

    Keeping essential services running

    The station is situated in the heart of the area with homes, shops and a school, amongst other public services nearby. To ensure that construction works did not negatively impact local residents and other stakeholders, we liaised closely with them throughout the project.

    We also scheduled our works to ensure the London Underground and London Overground lines in the existing station continued to operate as normal, making Whitechapel an incredibly complex construction challenge.

    Whitechapel Station facts and figures:
    • 18,000m³ concrete poured
    • 2,800 tonnes of structural steel work used
    • 355m cross passage tunnel
    • 3 x escalators installed
    • 2 x 30m-deep shafts excavated

     

    Whitechapel Station

    2,800 tonnes

    of structural steel work used

    3

    escalators installed

    1 of 10

    new major stations for the Elizabeth line

  • ElecLink Interconnector project, Kent

    ElecLink Interconnector project, Kent

    The world’s first high voltage direct current interconnector in a live rail tunnel, increasing energy transmission capacity between the UK and France.

    In consortium with Pysmian Group, we have installed two 65km long electricity cables between France and the UK through the Channel Tunnel, allowing both countries to share costs of creating and distributing power.

    The ElecLink interconnector will have a 1GW capacity, providing enough energy to power more than 1.65 million households per year. This will enhance both the UK and France’s energy capacity and security, helping the two countries to meet their current and future energy needs and potentially lead to cheaper fuel costs.
    This is the first non-subsea link between mainland Europe and the UK that utilises existing infrastructure to ensure zero impact on the marine environment.

    Innovative cable management
    To mitigate the challenges of working on a live railway, our in-house experts developed an automated cable management system. The innovative system used articulated cable carriages mounted on a monorail system which pulled the cable through the tunnel, improving productivity and reducing manual handling risks.

    Each cable drum, weighing 70 tonnes and 2.5km in length, had to be carefully unwound and jointed to the next to maintain continuous productivity and meet our customers completion requirements.

    In addition to the two main cables, a number of ancillary communication and performance monitoring cable systems have also been installed.

    Bespoke engineering works train

    Before the cables could be pulled into the tunnel, the team installed a hexagonal monorail which was installed using 10,000 galvanised steel brackets and 40,000 bolts. The monorail contained 28,000 carriages which were fabricated by Painters Brothers – Balfour Beatty’s in-house structural steelwork fabricators.

    We designed and manufactured a bespoke engineering works train to automate the installation process. The 12-wagon train had three automated arms mounted to simultaneously drill all the holes for each bracket at once. This enabled the team to drill and install the full length of the tunnel within four hours, improving output rates by 10 times compared to a traditional manual installation.

    The design of the works train considered speed, efficiency, ergonomic working and the safety of the operatives through the reduction of manual handling, working from height and hand arm vibrations.

    The jointing
    The project has seen a range of bespoke equipment being used, including the works trains, bespoke drives and hauling units. One of the most remarkable pieces of equipment was the tunnel jointing train, delivering a task that had never been achieved before.

    Our collective team of experts developed a train that raised the jointing teams up to the crown of the tunnel and surrounded them in a climate controlled building. This enabled for the very sizeable and heavy cables to be extracted, manipulated and then held in a position within the two jointing platforms.
    Within a 57 hour full blockade, both cables were successfully jointed suspended 5m up in the air and encased in an environment specifically controlled for climate and quality.

    Fundraising
    Always looking for ways to make a difference in their local community, the ElecLink team has supported the Pilgrims Hospice with a number of fundraising activities such as a raffle to name the works trains.

    The Pilgrim’s Hospice, based in Canterbury, is East Kent’s largest hospice charity helping people who face incurable illness. The team raised over £15,000 for the charity over the years they were on site.

    65km

    long cables

    10,000

    galvanised steel brackets installed

    £15,000

    raised for local hospice

  • The Southern Gateway, Texas

    The Southern Gateway, Texas

    This $666 million project for Texas Department of Transportation (TxDOT) will rebuild and widen Interstate 35E south of downtown Dallas and widen U.S. 67 between I-35E and I-20 and the I-35E/U.S. 67 split.

    With around 218,000 vehicles using the road per day, the project aims to decrease congestion, enhance travelling safety, support traffic operations, address roadway deficiencies and increase connectivity.

    As an equity member of the Pegasus Link Constructors (PLC) joint venture with Fluor Corporation, we are responsible for the design and construction of the project that increases the capacity of 11 miles of roadway to meet the needs of road users and enhance road safety through rebuilding and smoothing out existing sharp curves and adding shoulders.

    Scope of work

    To complete the various works taking place, the project requires extensive earthwork, drainage, retaining wall construction and bridge and pavement improvements.

    To widen the road, the team are expanding the I-35E from four to five general-purpose lanes in each direction while adding two reversible, non-tolled express lanes in the centre of the corridor. The express lanes will be useful for additional lanes in and out of the downtown area during peak travel times, which occur during morning and evening rush hour.

    Similarly, the US.67 from I-35E to I-20 will also gain a third, general purpose lane in each direction. The existing high-occupancy vehicle (HOV) lane on US.67 will be rebuilt to provide a reversible, non-tolled express lane in the centre.

    The project broke ground on February 2018 and is on schedule for completion in 2022.

    Limiting impact

    Initially, TxDOT anticipated acquiring over 12 acres of right-of-way but this was reduced to just 3.6 acres to limit the negative construction impacts to the local community. PLC and TxDOT also developed a phasing plan to keep construction progressing and traffic moving while carrying out utility relocations.

    Community centred

    PLC is also building the foundation of the Southern Gateway Park, a five-acre green space that will serve as a catalyst for economic development and community revitalisation. Once open, it will serve as another visual gateway into the city and as a gathering point for the local community and those visiting the Oak Cliff area of Dallas. Amenities are set to include a skate and recreation area, bike rental kiosks, open-air performance pavilion and a children’s garden.

    $666

    million project

    218,000

    vehicles using the road a day

    11miles

    of roadway to be upgraded

  • I-635 East, Dallas, Texas

    I-635 East, Dallas, Texas

    Balfour Beatty, in joint venture with Fluor Corporation, is helping relieve congestion, provide local connectivity, and improve safety for users of the I-635 in Dallas, Texas.

    In 2019, we were awarded the $700 million design, construction and maintenance of the interstate. The I-635 East project will see the reconstruction and widening of 11 miles of interstate highway from US 75 to I-30 (including the I-635/I-30 interchange).

    Scope of work

    We are widening and adding general purpose lanes, increasing from eight to ten. The interstate highway will also be upgraded to consist of 12 lanes in total with the construction of two continuous frontage roads. The team will also reconstruct existing tolled managed lanes, service roads and make various intersection improvements. Works began in spring 2020 with approximately 500 jobs predicted for craft workers at the peak of construction.

    Keeping up with demand

    The road was originally built in 1969 and since then the area has become one of the fastest growing economies in the country, making it one of the state’s busiest metropolitan roads. Initially designed to accommodate up to 180,000 vehicles a day, demand has increased with around 230,000 daily users, requiring improvements to be made.

    State-wide initiative

    As part of the state-wide Texas Clear Lanes initiative, the I-635 East project is organised to address the most congested roadways in the state’s metropolitan areas. The Texas Department of Transportation (TxDOT) is addressing the gridlock issue for drivers state-wide, collaborating with local transportation leaders to identify critical road projects.

    $700million

    project value

    11miles

    of Interstate

    230,000

    daily road users

  • Woolwich Station, Elizabeth Line, London

    Woolwich Station, Elizabeth Line, London

    Forming a key part of the regeneration of the former Royal Arsenal site, the new station provides links to Canary Wharf, central London and beyond for 56,000 passengers a day.

    A historic location

    The new station is located on the site of the Royal Arsenal which was home to a military academy and previously used for the manufacture of guns and explosives, munitions testing and production of medals including the ‘Dead Man’s Penny’ which was given to the next of kin of those killed during World War One.

    Modern architecture reflects a military past

    The station’s design subtly references the military past of the site through features including the brick-built structure which reflects the brickwork of the Woolwich Arsenal Buildings. The cladding on the external façade also includes images of the Britannia and the Lion which featured on the ‘Dead Man’s Penny’ medal, and the pillars in the station concourse feature tiled motifs in the colours of the Royal Engineers and Royal Artillery regiments that were originally based on the site.

    Diverse engineering capabilities

    To prepare the site for the construction of the 276 metre-long station box by Berkeley Homes, our in-house specialists, Balfour Beatty Ground Engineering delivered the diaphragm walls and bearing piles. Following completion of the station box we went on to complete and fit-out the new station which included plant installation and finishing works at the two portals where the new trains surface from the Thames Tunnel.

    A catalyst for regeneration

    The new station is key to the wider regeneration of the Royal Arsenal site which includes 3,750 new homes, as well as new cultural, heritage, commercial and leisure facilities. Opening on to Dial Arch Square, the station is linked to the wider town centre via a green space and impressive public realm.

    Creating a skilled workforce for the future

    Our apprentices and graduates experienced working across the whole project lifecycle, from civil engineering and construction through to architectural finishes and the installation and testing of mechanical, electrical and plumbing systems. This equipped them with the skills and experience to further their careers on other major infrastructure projects.

    4.8 million hours

    without a RIDDOR reportable incident

    One of10

    new Crossrail stations

  • M+ Museum, Hong Kong

    M+ Museum, Hong Kong

    Gammon, our 50:50 joint venture, was appointed as Management Contractor of the M+ Museum located on the West Kowloon waterfront, Hong Kong.

    The one-of-a-kind building boasts 17,000m2 of exhibition space and consists of a 14-storey tower over a 3-storey podium and a 2-storey basement. The many collections of visual art located in the museum’s 33 galleries will open to the public at the end of 2021. As one of the largest museums of modern and contemporary visual culture in the world, it is a masterpiece of engineering and design.

    Fine art complemented with modern facilities

    The new museum also includes three cinemas, a Mediatheque (multimedia library), a learning hub and a research centre alongside other facilities to interest those who may not have an eye for fine art.

    Safe and efficient project delivery

    To ensure safe and efficient project delivery, Gammon adopted an ‘integrated digital project delivery system’ that included implementing many advanced technologies before construction started. One of the main challenges the team faced was building over the tunnels of two existing live railways. Using 3D scanning and Building Information Modelling (BIM) eased the difficulty of this task and allowed the team to prepare for the delivery of the project.

    As well as utilising digital tools, off-site manufacturing techniques and modularisation were used to help make delivery more efficient and improve standards of quality.

     

    17,000 m²

    of exhibition space

    1,700 people

    employed at the peak of works

    HK$5.5 billion

    (c. £551.9 million) project value

  • University of Strathclyde Learning and Teaching facility, Glasgow

    University of Strathclyde Learning and Teaching facility, Glasgow

    We have successfully delivered a new £60 million learning and teaching facility, linking two of the University’s existing buildings with a new build element to create a facility fit for the 21st century.

    We delivered the refurbishment and extension of the existing Grade II listed Architecture building and the neighbouring Colville building. Our works involved linking the two together with a new-build element to create a modern teaching space which also celebrated the original architecture. Our in-house specialists, Balfour Beatty Kilpatrick, provided the mechanical and electrical engineering services for the new state-of-the-art learning hub.

    The new facilities include a large-scale teaching space, a learning village for individual study, student facing support services and a modern, purpose-built accommodation for the University of Strathclyde Students’ Association.  

    Helping our customer deliver net zero  

    The main objective for this scheme was to make a virtue of the existing buildings. Opting for refurbishment over building completely from scratch, we have helped to reduce costs, ensured that the facility was in the most useful and central location and have reduced embodied carbon by 67%.

    Delivering sustainable solutions

    To help the University meet their sustainability targets and to implement some nature-based solutions, the customer requested a green roof solution. We worked collaboratively with the design team to explore options from design through to installation and today the roof provides a range of benefits including a reduction in the building’s energy consumption, lower air pollution and improved wellbeing.

    Community benefits delivered

    Through the project, the team worked closely with the University to deliver multiple benefits for students and the local community, this included:

    • 56% local spend (within 40 miles of the project site)
    • 90 bags of food donated to local food banks
    • £10,313 raised for charities
    • Engagement with 676 higher education students
    • Work experience (both face-to-face and virtual)
    • Six local school visits

    67%

    Carbon reduction by choosing refurbishment over new build

    £10,313

    Raised for charities

  • Forth Valley College’s Falkirk Campus, Scotland

    Forth Valley College’s Falkirk Campus, Scotland

    We successfully delivered Forth Valley College’s £56 million Falkirk Campus. Spread across three buildings, the Campus provides state-of-the-art facilities including world-class laboratories, a process training rig, a virtual control room and transmission training centre.

    Now operating as the College’s headquarters, the campus is home to more than 2,000 full-time students and specialises in science, maths, engineering and construction subjects as well as care, salon services and health and sport courses.

    A UK first!

    To provide firm foundations for the campus we utilised our in-house ground engineering and mechanical and electrical expertise and worked with our design partners, GI Energy, to develop the UK’s first ever large scale driven pre-cast energy pile arrangement. This consisted of over 800 thermal loops integrated into the concrete foundation system to create low carbon energy performance.

    Positively impacting the local community

    Working collaboratively with Forth Valley College, our team has successfully created over £20 million worth of social value in the local area. This included recycling 1,098 tonnes of waste and generating £2.22 in the local economy for every £1 we spent. We also developed an ambitious programme to deliver benefits to the local residents, schools and the College itself, as well as boosting the local economy by employing nearby workers and purchasing materials from various community enterprises.

    Learning, engaging and mentoring

    We provided earn and learn opportunities for over 72 apprentices and trainees, helping to create a lasting skills legacy in the area. We also sponsored the Engineering Development Trust, a UK STEM skills charity, to develop a new school STEM educational resource in partnership with the College. Over 160 secondary pupils across the College participated in extra-curricular STEM learning, site experience and mentoring provided by our team and the Engineering Development Trust. Through these initiatives we were able to link our industry with local colleges with the overarching aim to provide a pathway into construction for young people at Foundation Apprenticeship level.

    1,098

    tonnes of waste recycled

    72

    apprentices and trainees

    £36million

    spent in the local area

    96%

    of waste diverted from landfill

  • Wokingham Major Highways Programme

    Wokingham Major Highways Programme

    We're working with Wokingham Borough Council to provide vital infrastructure upgrades to alleviate congestion and enhance accessibility.

    Infrastructure for new communities

    With a growing population and the investment in new schools, leisure facilities, open spaces and 12,000 homes across the borough, Wokingham Borough Council’s £124 million major highways programme will ensure vital infrastructure upgrades are completed to alleviate congestion, improve traffic flow and enhance accessibility in the historic market town of Wokingham.

    The four-year package of works includes the planning, design and construction of nine projects which are divided into five schemes. The schemes are being delivered via the SCAPE Civil Engineering framework and include:

    • North Wokingham Distributor Road (NWDR)
    • South Wokingham Distributor Road (SWDR)
    • Winnersh Relief Road Phase 2
    • Arborfield Cross Relief Road
    • Barkham Bridge
    Early contractor involvement delivers

    A highly collaborative approach and a detailed strategy for planning, design and delivery is vital in ensuring we minimise any negative impact on the local community.

    Utilising the SCAPE Civil Engineering framework has enabled the Council to access our expertise early, ensuring risks are mitigated and best value solutions identified.

    The framework also provides flexibility with the programme of work so that each of the schemes can be delivered in an effective and efficient manner with the least inconvenience possible. This approach coupled with social value embedded throughout the whole project ensures we deliver real benefit to the communities where we are working.

    150

    individuals employed on the project at construction peak

    6,700

    students estimated to be engaged by the project team

    50

    volunteering days estimated to be completed throughout the duration of the projects

  • NHS Louisa Jordan Hospital, Glasgow

    NHS Louisa Jordan Hospital, Glasgow

    Working as Principal Contractor, we collaborated with the Scottish Government, the military and other contractors to successfully deliver the new temporary NHS Louisa Jordan Hospital at Glasgow’s Scottish Events Campus (SEC).

    The clinical facility was constructed to provide extra capacity should NHS Scotland require additional flexibility during the COVID-19 pandemic.

    The scale and speed of the build was astonishing, with the conversion of 24,000m² of the SEC into a space providing 1,036 patient beds and 90 high dependency units. All of this was achieved in just 18 days from standing start to handover.

    Construction works included the building of sterile temporary wards, installing and commissioning life-saving oxygen and gas systems, as well as laying 23,000m² of vinyl flooring. Balfour Beatty Kilpatrick supported the delivery of the mechanical and electrical engineering works, which included the installation of 220,000 metres of fiberoptic and structured cabling, 35,000 metres of network cabling for the nurse call system, 2,200 patient call devices, and 1,144 oxygen outlet points.

    All works were carried out in accordance with the Site Operating Procedures, which ensured the health, safety and wellbeing of all those who work with and for Balfour Beatty.

    "It has taken just over two weeks to design, construct and mobilise NHS Louisa Jordan. This has only been possible thanks to all of our contractors working around the clock to make sure we are ready to support the NHS in Scotland ... because of the efforts of Balfour Beatty and others, we now have a safe, effective and high quality environment which stands ready for patients, if required."

    Jill Young

    Chief Executive
    NHS Louisa Jordan

    18 days

    From standing start to first handover

    24 hours

    To mobilise the delivery team

  • A14 Cambridge to Huntingdon

    A14 Cambridge to Huntingdon

    Opened eight months ahead of schedule, the £1.5 billion road improvement project upgraded 21 miles of the A14 to three lanes in each direction with four lanes between Bar Hill and Girton. Adding additional capacity, the project helped boost the local and national economy and reduced journey times by up to 20 minutes.

    Cutting edge technology

    The A14 has been at the cutting edge of using new technology to deliver more effective, safer and sustainable solutions. The A14 Integrated Delivery Team (IDT) - comprised of the contractors; Balfour Beatty, Costain and Skanska and the designers; Atkins and Jacobs and Highways England - adopted innovative and sustainable construction methods, that helped the scheme complete earlier than scheduled. Utilising digital asset management and in-field visualisation software SiteVision, the team planned and designed complex routes for utility diversions in a safe and efficient way, therefore saving time and cost.

    Self-driving trucks were tested for the first time in England on this project. The trucks were programmed remotely to follow a pre-determined route and were able to detect and avoid obstacles and other vehicles on the route. The successful trial will help reduce on-site activity in the future.

    Environmental benefits

    The IDT have taken environmental commitments seriously and planted two trees for every one that had to be removed for the new road to be built. This resulted in around 900,000 trees and shrubs being planted, helping ensure that disruption to the nearby environment was kept to a minimum.

    The team also carefully moved 10,000,000 m³ of earth - equivalent to around four Great Pyramids of Giza - using trained excavator operators who understand the archaeological impact of the work they carried out. This important work allowed areas of historic interest to be investigated or preserved.

    Awards and accolades

    At the 2019 British Construction Industry Awards, the A14 team took home awards in the categories of Digital Transformation Initiative of the Year, Productivity Initiative of the Year, Partnership Initiative of the Year as well as winning the coveted Initiative of the Year award.

    The team were also presented with three prestigious RoSPA Gold awards, recognising the IDT’s practices and achievements which ensured that staff, supply chain partners and customers got home safely at the end of every working day.

    The scheme was the first highways project accepted as a Considerate Constructors Scheme (CCS) Ultra Site. This recognised the team’s commitment to encourage its supply chain to help improve the CCS standards and work innovatively. The project was awarded Ultra Site of the year in summer 2019, highlighting the teams collaborative working.

    The project has won 35 awards to date, with other awards including the rescue project of the year 2019, presented by the Current Archaeology awards. These accolades highlight the team’s focus on collaboration, health and safety and keeping the customer at the heart of delivering the project.

    10,000,000m³

    of earth moved

    21miles

    of the A14 upgraded

    £1.5 billion

    project value

  • Tuen Mun-Chek Lap Kok Link

    Tuen Mun-Chek Lap Kok Link

    Gammon, our 50:50 joint venture, has helped improve journeys for users of the Tuen Mun-Chek Lap Kok (TM-CLKL) road in the New Territories area of Hong Kong.

    The TM-CLKL road project comprised of two elements; the Northern Connection – which opened in December 2020 – and the Southern Connection – which opened in 2018. Our team successfully completed a contract within each Connection.

    The Northern and Southern Connection Viaducts

    The HK$2.6 billion Northern Connection project included the construction of the tunnel buildings and electrical and mechanical works which serve the 5km constructed tunnel. This includes the tunnel’s ventilation, tunnel and road lighting, central monitoring and control systems. This is the first tunnel in Hong Kong to include a service gallery underneath the carriageway.

    The civil engineering and building works included the construction of multiple tunnel buildings, with uses varying from administration and toll control to the maintenance depot and satellite control. The team also completed landscaping works on landfill at both sides of the tunnel.

    The HK$8 billion Southern Connection Viaduct contract is part of the 9km TM-CLKL. The project involves the design and construction of a dual two-lane 1.6km sea viaduct between the Hong Kong-Zhuhai-Macao Bridge, Hong Kong Boundary Crossing Facility (BCF) and North Lantau.

    The project also included the construction of nine approach viaducts and other associated works including slope improvement, environmental protection and mitigation measures.

    Safe and efficient delivery

    To ensure effective working in a safe environment, 70% of the electrical and mechanical works on the TM-CLKL Northern Connection tunnel project were built off-site using modular construction. 3D scanning of the tunnel was carried out to check for any as-built deviation or interfacing elements. This ensured that the requirements for fine adjustment were known in advance and well prepared before installation on-site, promoting safe and efficient working.

    9

    approach viaducts

    1.6km

    dual two-lane sea viaduct

  • HS2 main civil engineering works

    HS2 main civil engineering works

    HS2 will see the creation of a state-of-the-art, high-speed railway line, provide the UK with additional rail capacity across the country and play a critical role in the low carbon transport future of the UK.

    Our joint venture, Balfour Beatty VINCI, is responsible for extensive earthworks, ground engineering, viaducts and tunnels along a 90 kilometre stretch of the project, working from the south at the Long Itchington Wood Green tunnel to the north at the West Coast Main Line tie-in near Litchfield. The 90 kilometre stretch also includes work on a major junction into central Birmingham at Curzon Street.

    Reducing carbon emissions

    The Washwood Heath Railhead site will see up to 15 freight trains haul 10 million tonnes of aggregate to HS2 construction sites over the course of the project. It is estimated that each freight train will replace approximately 70 lorries, helping to substantially reduce carbon emissions.

    Minimising disruption at Washwood Heath

    As part of the main works civils contract, Balfour Beatty VINCI will construct a large piling platform for the Bromford tunnel approaches, railway embankments, as well as haul roads at Washwood Heath. The haul roads will help to reduce the amount of vehicles on the public highway- minimising disruption in the local area during the construction works.

    Creating jobs in the West Midlands

    Not only will the arrival of HS2 benefit users of the service - it will also benefit the local community by creating a substantial number of jobs. Through the delivery of the main civil engineering works contract, Balfour Beatty VINCI is set to be one of the biggest recruiters in the West Midlands with up to 7,000 skilled people required to deliver the contract.

    90kilometre

    of works carried out

    7,000

    skilled jobs

  • M4 Smart Motorway

    M4 Smart Motorway

    Going from London to Wales, the M4 forms part of the strategic road network in the west of England. It connects people, communities and businesses, carrying on average 130,000 vehicles per day.

    Our Balfour Beatty VINCI joint venture is working on behalf of Highways England to upgrade the road to a Smart Motorway between Junction 3 at Hayes and Junction 12 at Theale. The project, the largest of the Smart Motorway schemes and a flagship project for Highways England, will help alleviate congestion through widening the carriageway and replacing 11 bridges to accommodate a new lane where there is no existing hard shoulder.

    More reliable journey times      

    Once complete, the Smart Motorway will help reduce congestion along this key road by smoothing the flow of traffic and improving the reliability of journey times. With more reliable journey times and additional capacity created, the scheme will help to support and facilitate economic growth within the region.

    Smart working reduces disruption

    Seven of the 11 new bridges will be built alongside the existing structures which will then be demolished. This approach minimises disruption as the existing bridges can remain in use whilst the new structures are built. It also minimises the length of time the road will be closed to traffic as the majority of works do not require road closures.

    Digital innovation enables smooth delivery

    We’re utilising digital rehearsals to pre-plan the delivery of works to ensure everything goes to plan on site. This involves building a 4D digital model of what is going to be built and maintained, allowing any potential issues to be identified early on and solved before work begins on site. The digital rehearsal is also used to train operatives by simulating construction processes in a controlled environment - improving understanding of what is being delivered before work starts.

    Data driven decision making

    There’s also a Control Centre on-site that allows the team to track the progress of the project and manage resources. All the digital systems and real-time project data is available within the Control Centre, allowing the site team to quickly make decisions to ensure efficient delivery of works.

    Additional road enhancements

    It is estimated that additional capacity, in each direction, will accommodate for 1,500 vehicles per hour with 38 high visibility emergency areas available. As well as 131 new gantries being installed, there will also be 17-miles of new, upgraded or repaired environmental barriers.

    32miles

    of new Smart Motorway

    11

    new bridges

  • Los Angeles International Airport Automated People Mover

    Los Angeles International Airport Automated People Mover

    We are creating efficient access for passengers and reducing congestion at one of the world’s busiest airports - LAX.

    With responsibility for the 30-year design, build, finance, operation and maintenance of the LAX Automated People Mover (APM) project, we are committed to helping Los Angeles World Airports (LAWA) deliver its wider Landside Access Modernization Program.

    The project delivers six APM stations along a 2.25-mile guide way that links the LAX terminals to the to-be-constructed, consolidated rent-a-car facility. Driverless vehicles will transport passengers every two minutes during peak periods with various parking garages and an on-site APM maintenance facility to ensure unencumbered operations. The APM will also link into the wider LA Metro system, allowing arriving LAX passengers easy public transport access to downtown Los Angeles.

    The new line will have capacity of up to 10,000 passengers per hour. LAWA anticipates that it will carry 85 million passengers per year providing a modern, reliable solution to help ease vehicle congestion and emissions in the terminal loop.

    30year

    Concession

    2.25miles

    APM length

  • The Greater West Electrification

    The Greater West Electrification

    To enable electric trains to run from Bristol to Cardiff, we electrified 77km of the Great Western Railway line on behalf of Network Rail.

    Making a significant contribution to Network Rail’s 275km long Greater West Electrification Programme, our expert team designed and constructed over 4,200 masts and booms to hold the 643km of cabling required to electrify the route between Bristol and Cardiff.

    Delivering the project to schedule and with minimal disruptions to train services, our teams worked around the clock for almost two and a half years. Many activities took place through the night whilst services were paused, as well as during bank holidays and weekends.

    We successfully completed our works in January 2020, a milestone marked by the first electrified train running out of Cardiff Central Station.

    Great Western Railway trains between Bristol and Cardiff now use energy efficient electricity instead of diesel, resulting in a more sustainable, quieter and cost-efficient railway.

    Technology delivers efficiencies

    We employed the latest technology and innovations in design, construction and rail plant to drive efficiencies and enhance safety throughout the project. 

    Our team introduced the eviFile system to monitor and manage our quality performance. The platform allowed field engineers to locate their position along the track to ensure installations were carried out as designed and to high levels of quality. The team were also able to quickly search reports using hashtags to save time.

    The system was in constant development, resulting in new features being added as potential improvements were identified. This meant that the software was fully optimised and customised for the team.

    “Balfour Beatty was chosen because it could deliver a more consistent and cost-effective solution for the client."

    Francis Paonessa, Managing Director of Infrastructure Projects, Network Rail

    4200

    masts designed and built

  • Hong Kong International Airport Terminal 2 Expansion Works

    Hong Kong International Airport Terminal 2 Expansion Works

    Gammon, our 50:50 joint venture, is delivering the expansion works at Hong Kong International Airport. Valued at approximately HK$12.88 billion, this project is their largest single contract to date.

    The works include expansion of the Terminal 2 building, an annex structure, interconnecting bridges, landside transport facilities including viaducts and roads, underground utility services, footbridges and modification works to existing facilities at Hong Kong International Airport (HKIA). The provision of building services and airport systems also form a major part of the works.

    The contract is part of the Three-runway System (3RS) project at HKIA and will ultimately see Terminal 2 expanded to become a full-service terminal, providing both arrivals and departures services.

    Our approach
    Our construction proposal focuses on off-site and modular solutions, especially for electrical and mechanical aspects and many of the internal fit-out elements of the main building such as check-in islands, retail shopfronts and link bridges. We'll also be applying a kit-of-parts approach with a high degree of standardisation to a number of areas. These approaches allow us to simplify and reduce complex construction activities and provide a significant reduction in on-site labour requirements to improve both safety and the logistics of operating in the airport environment.

    On this project, a number of in-house digital innovations will be used to support delivery including an off-site fabrication monitoring solution, concrete management system and sensors that track plant behaviour to ensure maximum productivity.

    3000

    people employed at peak of works

    60+ years

    working for HKIA

  • Old Oak Common station

    Old Oak Common station

    HS2’s new c. £1 billion Old Oak Common station will become the UK’s best-connected rail station once completed.

    Our Balfour Beatty VINCI SYTRA joint venture will be responsible for the final design, construction and commissioning of the station in North West London.

    Upon completion, the new station will boast six underground platforms and up to eight platforms on the adjacent Great Western Main Line. Old Oak Common will also provide high speed rail services to the Midlands, central London, Scotland and the North, as well as direct services to three major airports.

    Incorporating passenger and retail facilities, the new station will provide an exceptional customer experience for both passengers and visitors to the station.

    Driving regeneration 

    Construction of the iconic station will support up to 65,000 jobs and 25,000 homes in the local area, helping kick-start one of Britain’s largest regeneration projects and transforming the former railway and industrial area. A new public park will also be situated to the west of the station, which will act as a green space that welcomes visitors to Old Oak Common and provide a new focal point for the growing community. At peak of construction, the project will employ a direct management team of 140 and a wider workforce of approximately 2,500.

    Bringing rail capacity back on track

    Along with improving the local area, Old Oak Common station will also help ease congestion and over-crowding on existing lines, therefore dramatically increasing rail capacity across the UK.

    6 underground platforms

    2,500

    approximate size of construction workforce

  • Caltrain Peninsula Corridor Electrification Project, California

    Caltrain Peninsula Corridor Electrification Project, California

    The electrification of the Caltrain rail corridor that connects San Jose to San Francisco will improve the service, capacity and reliability of the transit system. It will remove the current diesel trains and help implement the future of high-speed rail in California.

    Improving passenger services

    We are providing design and build services for the electrification of the 52-mile Caltrain corridor. As part of this, we are upgrading various aspects of the commuter rail service which runs through San Francisco, San Mateo and Santa Clara Counties – as well as 17 cities along the corridor. The upgrades will improve the performance, operating efficiency, capacity, safety, sustainability and reliability of the rail service.

    Minimising passenger disruption through efficient working

    A 25kv AC Overhead Catenary System (OCS) will serve as the power source for the new electric vehicles that will carry commuters throughout the area. The OCS will be powered by two traction power substations, one switching substation and seven paralleling substations. Whilst ensuring minimal disruption to the 92 daily Caltrain trains serving over 65,000 commuters, we will also replace signal systems and earth existing facilities as part of the process to electrify the 52 miles of existing corridor.

    In mid-2020, the team completed two of the longest electrical wire runs on the project in record time. Instead of using traditional methods, the team used a wire train – a self-driven maintenance vehicle – to help them install the OCS wires safely and more efficiently. This resulted in the team being able to string two wires extending about 5,800 feet in one day, a rate much higher than traditional methods.

    52mile

    Caltrain corridor

    25kv

    AC Overhead Catenary System

  • Central Rail System Alliance (CRSA)

    Central Rail System Alliance (CRSA)

    Balfour Beatty has an 80% share in the 10-year alliance responsible for the development, design and delivery of track renewals and crossings, as well as associated infrastructure works across the London North West, London North East and East Midland routes.

    The alliance between Network Rail, Balfour Beatty, Atkins and TSO has been created to make a positive impact on the UK track renewals industry by drawing on the strengths of all alliance partners and collaborative working.

    Bringing together the companies’ deep domain knowledge and experience in critical rail infrastructure and track renewals, the alliance will deploy innovative working methods. This includes a digital management platform incorporating mechanised processes and digital solutions to realise efficiencies and create a more reliable railway infrastructure.

    Here are a few highlights from just some of the many projects CRSA has successfully delivered:

    • King’s Cross Remodelling Project – dubbed ‘King’s Uncrossed’, the project improves reliability and punctuality for passengers and involved the wholesale replacement of the more than 40-year-old tracks, as well as a redesign of the track layout on the 1.5-mile approach into the station. It also saw the re-opening of a disused tunnel after 44 years to add two additional lines into the station from the north.
    • Cricklewood - switches and crossings renewed for two crossovers and one double junction in Central London - successfully completed within four weekends
    • Kilsby Tunnel – successful delivery of complex drain and track renewals works within Kilsby Tunnel. The work improves future journeys on Europe’s busiest mixed-use passenger and freight railway line by reducing the risk of flooding.
    • Wembley – 450 yards of track was renewed at the extremely busy Wembley Station. Due to the single-track and the site restrictions, the team utilised Balfour Beatty’s innovative new track construction (NTC) machine, which provides a continuous, automated solution for installing new track.

    10

    year Alliance contract

  • Broadside, Manchester

    Broadside, Manchester

    We financed and built this residential-led mixed-use development within New Cross, Manchester.

    Impressive facilities

    The ‘build to rent’ development consists of 274 one, two- and three-bedroom apartments within two buildings positioned around a landscaped courtyard. Residents will be provided with amenities including concierge facilities, resident’s lounges, a gym, and two roof top terraces incorporating private dining pavilions.

    Off-site efficiency

    Adopting an off-site construction approach resulted in 107,500 hours of work being removed from site – helping to reduce safety risks and waste produced on-site as well as reducing disruption to the local community. As part of this approach, the precast concrete frame and façade were manufactured at a factory only six miles from the project site, helping to reduce carbon emissions associated with the project.

    A great location

    The development is within a five-minute walk of the vibrant and creative Northern Quarter district which offers a range of independent designers, bars and restaurants. It is also within easy reach of Piccadilly Gardens, Market Street and Shudehill interchange for connections to the extensive bus and Metrolink services, as well as Manchester Victoria train station.

    The development follows the principles set out by Manchester City Council within the New Cross Neighbourhood Development Framework to help bring forward the regeneration of the area.

    274

    apartments

    3,485

    offsite components

  • Viking Link Interconnector Project, Lincolnshire

    Viking Link Interconnector Project, Lincolnshire

    On behalf of joint venture delivery partners National Grid and Energinet, we’re delivering onshore civil engineering works to connect power grids in the UK and Denmark and improve the security of electricity supply.

    As part of the four-year contract, we’re installing 68km of high voltage cabling across Lincolnshire; connecting power grids in Denmark to the UK grid via Bicker Fen substation. 

    Drawing on years of experience and our in-depth knowledge in delivering complex high voltage cabling projects, we're working collaboratively with National Grid and Energinet to develop a comprehensive solution to ensure the safe and efficient delivery of the project. 

    Upon completion, the project will form part of the wider 765km Viking Link which will supply sustainable electricity for 1.4 million homes in Britain. The Viking Link will contribute to the UK Government’s commitment to reduce all greenhouse emissions to net zero by 2050 by providing access to a well-developed, low-cost renewable energy market. 

    68km

    of high voltage cabling

    £90M

    project value

  • Littlebrook substation, Kent

    Littlebrook substation, Kent

    We are constructing a new high-voltage substation for National Grid to facilitate the flow of 2 GW of renewable and low-carbon energy.

    Littlebrook substation is an integral part of the UK electrical system, delivering electricity to 1.5 million homes and businesses across the Southeast of England. Originally built in 1977, the facility was no longer operating in line with National Grid’s low carbon targets.

    Balfour Beatty were awarded the contract to design and build a replacement substation. This included the installation of cabling, overhead line connections and switchgear – the circuit board used to control, protect, and isolate electrical equipment. 

    A seamless team creates efficiency 

    We combined our engineering expertise from across the Balfour Beatty to provide our customer with a seamless team delivering all aspects of works, including:

    • Power transmission and distribution – the substation design, civils, structural, cable and overhead line elements
    • Construction and civil engineering – the construction of the GIS hall, major road and footpath
    • Ground engineering – innovative pilling and ground improvements
    • Mechanical and electrical engineering – high-voltage electrical installation (building M&E) and design of the circuit board to regulate, safeguard, and isolate electrical equipment
    • Specialist steel works carried out by our steel fabricators, Painter Brothers
    Cleaner gas insulating technology

    The existing facility was becoming difficult to maintain due to its reliance on greenhouse gas sulphur hexafluoride (SF6), a gas commonly used in the electrical industry to prevent short circuits and to keep the network safe and reliable.  

    The new substation will use the next generation of cleaner gas insulating technology 'g3' developed by National Grid. Just by replacing 1kg of SF6 with 1kg of g3 equals a saving of one car circling the earth four times. 

    Giving back to the community  

    Keen to give something back to the local community, the team helped a local school create an inviting area for outdoor science, design and technology projects. The previous area was not fit for use with an unstable shed, rotten planters and weeds. 

    Using recycled materials, the team created flower beds and erected a fence around the enclosed area and purchased a new shed and stone chippings. Once complete, the school hosted a grand opening for teachers and children which involved some planting of crops as part of their involved learning.  

    In addition, the team partnered with Dartford YMCA to donate Easter eggs for local children and a dishwasher for a new community café.

    5229 tonnes

    of CO2 emissions saved during construction

    2GW

    of renewable and low-carbon energy

  • Crossrail - Whitechapel and Liverpool Street Station Tunnels

    Crossrail - Whitechapel and Liverpool Street Station Tunnels

    As part of Europe’s largest infrastructure scheme at the time, we worked in joint venture with BeMo Tunnelling, Morgan Sindall and VINCI Construction to deliver early access shafts and sprayed concrete lining for the station tunnels.

    Whitechapel – a key interchange hub

    The Elizabeth Line (previously known as Crossrail) is a major new rail link project designed to provide a world-class, affordable railway. It will provide a high-frequency, convenient and accessible service that connects the City, Canary Wharf, the West End and Heathrow Airport to commuter areas across London.

    Complex construction

    The major construction works for the project included the construction of the Whitechapel and Liverpool Street station SCL tunnels. Associated works included the shafts and adits, platform tunnels, Tunnel Boring Machine (TBM) reception chambers and launch chambers, cross passages, access passages, escalator barrels, ventilation ducts and a link passage from the new Liverpool Street station to the London Underground Northern Line in Moorgate station. The works also included the construction of four compensation grouting sites in the vicinity of Liverpool Street station and one compensation grouting shaft in the vicinity of Whitechapel station.

    Realising the benefits of off-site construction

    Over 259 horizontal distribution service modules comprising of heating, chilled water, water services and containment were manufactured and installed by our in-house team. This removed over 11,000 hours of work from site, reduced working at height requirements and improved quality.

    Award-winning innovation

    Whitechapel is one of Crossrail’s most ambitious new stations, but it is also one of the most challenging, with a raft of improvements being delivered in a tightly-constrained and highly-populated area. In order to deliver the works, the Balfour Beatty, BeMo Tunnelling, Morgan Sindall plc and VINCI Construction joint venture employed various innovative solutions. These included the bespoke ‘Uphill Excavator’, which enabled construction of the shafts from the bottom up, much earlier and more safely than would have been possible with traditional downhill methods.
    The approach was recognised as a game-changing innovation with the award of the Product Design Innovation accolade at The British Construction Industry Awards in 2015, as well as receiving the Technical Design of the Year and Product and Equipment of the Year awards at the 2015 NCE Tunnelling and Underground Space Awards.

    259

    Service modules manufactured offsite

    11,000

    Hours of work removed from site

  • North and South 400kV Overhead Line, Avonmouth

    North and South 400kV Overhead Line, Avonmouth

    Once complete, this £214 million project will help transmit low carbon energy to six million UK homes and businesses on behalf of National Grid.

    Balfour Beatty will design, supply, install, test and commission a new overhead line which will form a critical element for the Hinkley Point C connection (HPC) scheme. Spanning 48km across the Mendip Hills in Somerset, the new 400kV overhead lines will transmit energy from Hinkley Point C new nuclear facility to Avonmouth substation.  

    To deliver this scheme, we bring together expertise from across Balfour Beatty including our civil engineering, power transmission & distribution and ground engineering teams. 

    Awarded through National Grid’s Overhead Line Design and Build Framework, the contract forms a vital part of the HPC scheme, linking the new nuclear reactor to the national grid.  

    The world’s first T-Pylons 

    The project will use National Grid’s new T-Pylon design, marking the first time this technology has been used on a live transmission asset. The new T-Pylon design significantly improves efficiency, reliability and safety by vastly reducing the need for working at height. 

    We are also working on the Hinkley 400kV Cable Works (Mendips) contract, a critical part of the Hinkley Point connection scheme, which will connect the new HPC reactor to the national grid. 

    48

    kilometres of overhead lines 

    116

    innovative T-Pylons installed

  • London Underground track renewals contract

    London Underground track renewals contract

    Balfour Beatty is delivering essential works to upgrade the 1,047km of underground network that keeps London moving.

    To ensure the continued reliability of the London Underground network, the contract will see investment in critical assets and the delivery of strategic enhancements. This includes the renewal of 13 kilometres of ballasted track and associated drainage, signalling, traction power and rail conductor works.

    We were first appointed to deliver track renewals on behalf of Transport for London in 2010, with the contract extended in 2019 for an additional four years. 

    Our detailed knowledge and experience of London Underground’s infrastructure and systems, as well as our commitment to championing innovation, was instrumental in securing the contract.

    Throughout the programme of works, we will introduce new measures and technologies such as remote surveying systems and viewing software to generate significant efficiencies while continuing to safely deliver the highest standard of work and reducing any potential disruption to the travelling public.

    1,047

    kilometre London Underground network

    10

    years upgrading the London Underground

  • North Bridge Refurbishment, Edinburgh

    North Bridge Refurbishment, Edinburgh

    We’re refurbishing one of Scotland’s most iconic structures to secure it for generations to come

    The 525-foot long, Grade A-listed North Bridge was originally constructed in the late 1800’s. After many years of heavy use, exposure to the elements and limited maintenance due to poor access, the iconic structure has started to crumble.

    Due to the growing risk to both pedestrians and the railway that passes beneath the bridge, The City of Edinburgh Council commissioned Balfour Beatty to carry-out the refurbishment of the historic three-arch bridge via the SCAPE Scotland Civil Engineering framework. Works include:

    • Structural steelwork repairs
    • Grit blasting and repainting of the structural steelwork
    • Repairs to the cast iron façades
    • Repairs to the bridge’s concrete deck
    • Improvements to the structural drainage systems
    • Replacement of expansion joints
    • Restoration and repairs to the King’s Own Scottish Borders War Memorial which is located on the east plinth of the bridge’s south pier
    • Installation of permanent platforms to improve access for future inspection and minor maintenance

    Once completed the works will extend the lifespan of the bridge and remove the need for further maintenance work for approximately 25-years.

    Managing complex logistics

    The bridge sits above Waverley railway station and railway lines and provides a vital connection for both vehicles and pedestrians between the old and new towns, both of which are UNESCO World Heritage Sites. 

    The logistics of maintaining access required careful consideration, collaboration and management. Utilising a suite of digital tools has helped us to mitigate and manage risk and minimise disruption to ensure successful project delivery. Using BIM we created a BIM Execution Plan to help inform buildability decisions and clash detection. 3D laser scanning and drones helped us to model the bridge to support the council with planning and support with future maintenance on the bridge.

    “As part of our broader plans to create a people-focused Capital under the long-term City Centre Transformation programme, the road running over the bridge will eventually benefit from active travel improvements, connecting to our growing network of walking and cycling-friendly routes."

    Councillor Lesley Macinnes

    Transport and Environment Convener

    The City of Edinburgh Council

    22

    local jobs created

    81%

    SME spend

    98%

    waste diverted from landfill

  • The Ocean Park Water World, Hong Kong

    The Ocean Park Water World, Hong Kong

    Gammon, our 50:50 joint venture, is creating Hong Kong’s first year-round, all-weather water park at Tai Shue Wan for Ocean Park Corporation.

    Covering an area of over 693,000 square feet, the Ocean Park Water World project includes construction of the main building structure and fit-out and installation of various indoor and outdoor attractions.

    The team will also deliver mechanical and electrical services installation and other building services work to support the water park’s specialist systems including wave generators and a water filtration plant.

    Lean technologies such as Building Information Modelling (BIM) are being utilised to maximise efficient coordination of works across the project.

    693,000

    square feet

    HK$2 billion

    project value

  • Sterling Natural Resource Center, California

    Sterling Natural Resource Center, California

    To help bring independence to the San Bernardino area, this design & build project will enhance the region’s water supply, while providing an opportunity for the district to self-manage its wastewater management and ground water recharge source. It will also educate the community about the treatment process.

    The state-of-the-art wastewater treatment facility will produce Class B biosolids, food to waste energy source and water to recharge the natural groundwater aquifer. The plant is designed to treat eight million gallons of water per day and at peak processing will be able to treat 10 million gallons of water per day.

    Balfour Beatty, along with lead designer and engineer-of-record, Arcadis, and architect-of-record, Ruhnau Clark Architects, is also providing the District with architecture, design, construction and operations. The team designed the facility with emphasis on efficiency, economics, reliability, flexibility and sustainability, with flexibility to be upgraded as future needs evolve. 

    The construction team broke ground in October 2018 and the project is expected to be complete in 2021. 

    8 million

    Gallons of water treated per day

  • Midland Metropolitan University Hospital

    Midland Metropolitan University Hospital

    Having been appointed to deliver the Early Works contract, we were awarded the £267 million Midland Metropolitan University Hospital contract by Sandwell and West Birmingham Hospitals NHS Trust.

    The hospital is a nine-floor, state-of-the-art building, and is the largest acute care hospital in the region, with approximately 700 beds for inpatients, an emergency department, theatres, diagnostic suites, labs, research and education centres. Over half a million people will be able to receive acute and emergency care from teams that will also provide paediatric, maternity, and inpatient adult care.

    The new mega-structure will have a gross internal floor area of approximately 85,924m² with the completion of the external façade and all associated mechanical, electrical and plumbing services, delivered by Balfour Beatty Kilpatrick.

    Driving success through innovation

    To help keep the project on schedule and reduce the risk of delays, we have adopted an innovate construction progress tracking process. Across the site, the design models have been linked using QR codes to integrate with our field based digital tool, BIM 360 Field. This allows the delivery team to scan the QR code using the BIM 360 Field application and update the status of their activities. This results in work being reviewed, and status’s updated in real time - helping the team to effectively manage the project.

    The team has also been using OpenSpace which has created greater efficiency, safety and value with the use of a 360° camera mounted to a pole or hard hat. The camera captures site progress providing accurate and easy retrieval of key construction activity records. Other benefits include progressive validation, timelapse analysis and encourages collaboration between all stakeholders.

    Our client Sandwell and West Birmingham NHS Trust were impressed with how we utilised digital Construction methods on this project. They said, “The engineering systems within are extremely complex and communication of this design within the digital environment has greatly assisted the client team in ensuring the subsequent build is compliant and maintainable. It is clear this has been an integrated approach from the outset of their involvement, with a suite of software selected that is adding value and working in compliment with each other.”

    A collaborative partnership

    From the outset we have engaged with the Trust, creating a ‘one-team’ approach. We began open discussions with the Trust to ensure that the contracts terms were right for both parties. We held weekly executive update meetings and mapped our senior team to the client’s team, showing commitment at all levels of the business and established relationships quickly. We also held weekly meetings with our senior managers and the Trust to ensure issues were resolved as soon as possible.

    Rachel Barlow, Director of System Transformation Sandwell and West Birmingham Hospital NHS Trust expressed, “I have worked with the Balfour Beatty team over the last 10 months on the Midland Metropolitan University Hospital project. The very nature of this project, right from the start (fast track procurement and mobilisation due to the former contractor entering liquidation), meant that early engagement with us and throughout the supply chain was critical to getting the project back on site. Any major scheme will face challenges and Balfour Beatty’s collaborative approach is essential to the success of the project.”

     

    85,924m²

    internal gross floor area

    675

    inpatient beds

    13

    theatres

    4,196

    rooms

  • East Wick and Sweetwater

    East Wick and Sweetwater

    We are developing affordable housing, private housing and rental properties on the site of the London 2012 Olympic Games. The Development Agreement is with the London Legacy Development Corporation (LLDC).

    This project includes the build and finance of 1,800 homes at the London Olympics venue as part of the redevelopment of the site. This project is a milestone, marking the company’s entry as an investor and developer into the UK’s regeneration and housing sector.

    This is a 50:50 joint venture with property management and development group Places for People. The project will see the creation of 450 affordable homes, 530 private homes and 540 rental properties to be built and divided into two neighbourhoods, called East Wick and Sweetwater. Each neighbourhood will include shops, restaurants, offices, workshops and public spaces.

    Key figures:

    • Phase 1 – 302 units across 4 blocks
    • £78 million senior debt funding from Homes England Homes Building Fund to be recycled and used across multiple phases.
    • Significant equity commitment by both shareholders.

    302

    units across four blocks in phase one

  • The Green Residential Housing Development

    The Green Residential Housing Development

    Balfour Beatty Homes is creating a new 60-home community in the prestigious town of Ullesthorpe in Leicestershire, featuring three to five bedroom homes that are designed for modern living.

    Prestigious Location

    The location of The Green allows homebuyers to benefit from rolling countryside with the convenience of nearby towns and cities including Leicester, Coventry and Birmingham. With the A5, M1, M6 and M69 all within easy reach, the village is an ideal base for commuters.

    A quality finish

    Balfour Beatty Homes carefully selects high-quality materials with the customer in mind. Each home at The Green incorporates unique contemporary design features, flexible living spaces and energy efficient materials and technology, all helping to create the ideal family home.

    Customer service first

    Building quality homes supported with the highest standard of service is at the heart of what Balfour Beatty Homes do. Our customer support team help their customers from the first enquiry, right through to when they have moved in, providing peace of mind to homebuyers. Each customer also receives a comprehensive introduction to their new home providing all the necessary safety and operation instructions. All homes are also built adhering to the Consumer Code for Home Builders.

     

    "Whilst trying to move during this period of COVID-19 we weren’t sure it would even happen, but Margaret kept us in the loop with all the movements. It’s been a very positive and enjoyable experience dealing with everyone at Balfour Beatty Homes." - a new resident

     

    Looking for a new home? Visit - www.balfourbeattyhomes.com/find-your-home 

     

  • Springhead Bridge, Kent

    Springhead Bridge, Kent

    We’ve installed a new bridge to improve connectivity and reduce the journey time from Springhead Park to Ebbsfleet International station.

    The 87-metre long bridge has two vehicle lanes as well as pedestrian footpaths and a cycle path. Completed in Spring 2020, the bridge reduces pedestrian journey times to Ebbsfleet International station from 20 minutes to around seven minutes.

    Springhead Bridge is a key piece of strategic infrastructure that spans over Ebbsfleet river where there is an abundance of wildlife, including mallards, coots, and butterflies. To prevent damage to the ecosystem and to minimise disruption to local wildlife an ecologist was employed to work alongside the project team. Work was also programmed to avoid noise that would impact on the bird nesting season. Prior to construction, a special barrier was installed to prevent reptiles and amphibians from entering the site.

    Archaeological items from over 2,000 years ago were also discovered at the site where the new bridge has been constructed.

    The project, which was delivered via the SCAPE Civil Engineering framework, formed part of a development plan that will see up to 15,000 new homes built in the area to create a 21st century Garden City in North Kent.

    Delivering for the local community

    Throughout the project we worked with the local community to provide a range of employment and skills opportunities. We created work placements for two students, engaged with 2,590 students from local schools, colleges and universities and donated eight tonnes of topsoil to a local charity to support the creation of a new community garden.

    A regular newsletter was also circulated to stakeholders and residents to keep them informed on the project’s progress.

    Award winning environmental solutions

    The project has won bronze in the Building and Construction category at the Green Apple Awards for Environmental Best Practice 2019, recognising the installation of a pontoon bridge across the river for the workforce that eliminated unnecessary vehicle movements as well as the diversion of 8,000m3 of non-hazardous soft material from landfill by sending it to a local land restoration site and the use of approved recycled crushed concrete for all under-road construction.

    Delivering in a challenging environment

    Space on the North side of the project was limited. The adjacent access road, embankment and High-Speed rail line always had to be kept clear, so engineering precision was needed throughout. Engineers worked within only a few millimetres to ensure the steel beams fitted correctly.

    Working over the water and constantly pumping out while maintaining a clean water course was also undertaken in order to comply with the Environmental Agency’s requirements.

    "From the early concept stage, all parties adopted a collaborative way of working offered through the SCAPE framework and this enabled us to share knowledge, expertise and build trust and understanding from the outset."

    Julia Gregory

    EDC Director, Ebbsfleet Development Corporation

    £2.5

    million social value generated

    2,590

    students engaged

    8 tonnes

    of topsoil donated to local community garden project

  • Seahouses Pier, Northumbria

    Seahouses Pier, Northumbria

    We completed the restoration of Seahouses Main Pier to safeguard homes, businesses and the harbour from the risk of sea flooding and costal erosion for another century

    Seahouses Main Pier was originally constructed in 1889 to support the lime and fishing industries. Today, the pier, harbour and adjacent coastal frontages play a vital role in supporting the area’s local community and tourism industry.

    Exposure to the elements and constant erosion from the sea had left the pier structure in very poor condition. After experts estimated that the pier only had 10-15 years of usable life remaining, Northumberland County Council commissioned Balfour Beatty to deliver the restoration works. Our works involved:

    • Filling underwater voids with concrete to strengthen the existing walls.
    • Encasing the pier with a 300mm thick layer of locally sourced concrete, effectively, creating a new wall around the pier.
    • Capping the new concrete wall with concrete slabs to secure the core and provide a working deck to accommodate 350 vehicles including disabled access spaces.

    Delivered via the SCAPE Civil Engineering framework, the restoration of the pier helps to safeguard the harbour's fishing and tourism industries for another 100 years and protects approximately 26 businesses and 139 homes from the risk of sea flooding and coastal erosion.

    Early contractor involvement

    Early contractor involvement enabled all parties to work collaboratively to design a programme that would not only deliver value for money but balance cost and programme whilst reducing both construction and environmental risks.

    This early involvement, as well as liaison with several agencies and the local community, played a key part in developing a robust strategy that ensured access to the pier was maintained for the 150,000 members of the public who embark on Farne Island boat tours.

    Working in an extremely sensitive marine conservation area

    The pier is located within areas of scientific interest, outstanding natural beauty and special protection. It is also the sole point of access to the Farne Islands; home to breeding birds and England's largest colony of seals.

    We worked collaboratively with the Marine Management Organisation and Natural England to minimise and prevent adverse environmental impact throughout the duration of scheme.

    “Balfour Beatty’s approach to community engagement was exemplar without any complaints which is a massive achievement in delivering a project of this complexity in a very public location”

    Aaron McNeill, FCERM Manager

    Flood & Coastal Erosion Risk Management

    Northumberland County Council

    165

    properties protected from the risk of sea flooding and coastal erosion

    100

    year design life

  • East Slope, University of Sussex

    East Slope, University of Sussex

    The £179 million student accommodation development provides 2,113 beds for students and was delivered using the combined engineering expertise of teams from across Balfour Beatty

    27 new buildings provide a range of accommodation options

    To create a mix of accommodation to suit the financial and social needs of students, we delivered a mixture of three to six storey cluster flats and three to four storey town houses. The experience of students living in the accommodation will be enhanced through the mixed use facility that includes a student services hub and retail spaces.

    An invested partner for the long-term

    As part of our contract we have become the University’s investment partner for the project which is part of a £500 million programme of investment for the campus. As a partner, we have a 50-year lease and lease back with full transfer of risk agreement and have invested 80% of project equity.

    A seamless team creates efficiency

    Alongside our investment capability, we combined our engineering expertise and technologies from across Balfour Beatty to achieve both programme and cost savings through a holistic approach to construction. We also worked with the client’s appointed team to develop the design with 'buildability' in mind whilst maintaining the architectural vision for the project.

    The expertise employed from across Balfour Beatty includes:

    • Civil Engineering
    • Construction
    • Mechanical & electrical engineering
    • Off-site Solutions
    • Power transmission and distribution
    Overcoming challenges in the ground

    Due to the steep slope of the site, a complex cut and fill exercise in ground made up of chalk saw over 30,000m3 of materials taken off site. We were able to find sustainable solutions to the waste that arose. We also managed all other earth and ground works including roads, retaining structures and superstructures to podium slabs.

    Building services lead the way

    The installation of services to buildings is crucial to project success as the construction methodology requires drainage and infrastructure services to be in place before building can begin. To make sure this stage of the project was completed efficiently our engineering and mechanical & electrical teams all worked closely to co-ordinate the installations efficiently.

    27new buildings

    2,113 beds

    30,000

    cubic metres of material removed to form the cutting

  • Dundee Regional Performance Centre for Sport

    Dundee Regional Performance Centre for Sport

    The new Regional Performance Centre for Sport provides a vital training and competition centre for a wide range of sports.

    The new sports complex, which is built around the existing velodrome and Ronnie McIntosh Athletics Stadium boasts several new facilities as well as upgrades to existing facilities. Along with a state-of-the-art sport science suite, the new Centre also features an 80 metre running straight to provide athletes with all-weather training facilities, a multi-sports hub with spectator seating, a strength and conditioning suite as well as indoor and outdoor artificial 3G grass pitches that meet World Rugby and FIFA compliance standards. The facility also features a competition standard athletics track and velodrome which help make the city of Dundee a top-class training venue.

    Construction of a low and zero carbon energy solution

    Alongside the sports complex we've built an energy centre that will make a significant contribution to Dundee's vision of being a sustainable city and accelerate the city’s ambitions for the development of a city-wide energy network. The multi-technology energy centre design combines heat pumps, gas combined heat and power, photovoltaic solar panels, solar thermal and large thermal stores for low grade and higher-grade heat combined with gas boilers for peaks in demand and backup.

    100+

    boreholes drilled at the energy centre

    3

    3G grass pitches

  • Camperdown Dock to Dundee Airport Flood Protection Scheme

    Camperdown Dock to Dundee Airport Flood Protection Scheme

    We completed vital flood defences to protect homes, businesses and infrastructure in Dundee

    Working on behalf of Dundee City Council, we installed vital flood defences to the Dundee Waterfront area between Camperdown Dock and Dundee Airport. A new, set-back, flood defence wall and flood gates were installed using a variety of materials including reinforced concrete and natural stone.

    The defences reduce the risk of flooding and provide peace of mind for residents and businesses that properties and infrastructure adjacent to the area will be at a lower risk of flooding in the future.

    Making a difference within the local communities

    The scheme, which was procured via the SCAPE Scotland Civil Engineering framework, produced many benefits to the local community. We actively supported the development of young people through apprenticeships and work experience placements to encourage people to join our industry.

    Enhancing public spaces

    In addition to the main scope of works to construct new flood defences, several areas along the length of the route were enhanced to create more appealing and useable public spaces for vehicles users, pedestrians and cyclists.

    Stakeholder management

    The new flood protection scheme stretches from Camperdown Dock to the Tay Road Bridge and from Discovery Point to the Dundee University playing fields. Throughout the works, the most significant challenge, other than the weather conditions, was the interface with the public. Pedestrian, cyclist and vehicle management were closely co-ordinated with the council to ensure issues were reviewed, mitigated and resolved positively.

    69%

    of the project workforce lived within a 40-mile radius

    £2.4million

    spent with local SME's

  • Warrington West Train Station

    Warrington West Train Station

    We designed and built the new award-winning station to provide rail travellers with new facilities and improved connectivity across the Northwest of England.

    Completed in 2019, Warrington West train station serves the whole Warrington West area and is a key transport link to the Omega development and Chapelford Urban Village housing estate in Great Sankey, Warrington.

    With a high percentage of work-related journeys taken by car, during peak times, the roads in the area were extremely congested. This not only increased the amount of fuel wasted but also contributed to the levels of air pollution and carbon dioxide emissions.

    The new station was designed to encourage a larger proportion of journeys to be made by rail so easy access on foot and by bicycle, bus and car were all key. The traditional ‘aircraft hangar’ design was just one of the features of the new station which also included:

    • A staffed station to improve customer service and promote safety and security
    • Sheltered ticket purchasing areas and toilet facilities
    • A secure pay and display car park with CCTV and lighting that accommodates 350 vehicles including disabled access spaces
    • Bus stops, taxi rank and drop off zones, as well as safe, secure and convenient cycle parking
    • Platforms with a new prefabricated overbridge, lift and stair access
    • On platform shelters and customer information displays
    Carbon reduction

    To support Warrington Borough Council’s carbon reduction goals, the project was designed to not only reduce congestion on local roads but include several energy and resource efficient products:

    • Energy saving lights on all platforms
    • Public address system that included ambient noise sensors that limited output to 10 decibels above ground level
    • Solar powered parking ticket machines
    • A drainage attenuation system located under the platforms to control run-off without creating additional drainage to the track system

    Recognising the role of the station in reducing carbon emissions and the quality of the construction, the project won both the Chartered Institution of Highways & Transportation North West Large Project of the Year and the Institution of Civil Engineers Large Project awards.

    Savings through value engineering

    During the early contractor involvement process, collaborative engineering workshops identified approximately £2 million of savings, including:

    • £660,000 by the relocation of the station building to avoid the need to divert a high-pressure water main and medium pressure gas main
    • £500,000 by transferring telecoms, power and signal cable diversion and renewal works to Network Rail
    • £50,000 on a revised design and erection solution
    A link to the world

    With four trains an hour departing from the new station heading towards Liverpool, Warrington central and Manchester, including Manchester airport, the station improves transport links to the area and provides a key link to the rest of the world.

    With a growing population and employment base, Warrington’s six train stations have seen a steady rise in passenger numbers. This is credited to improved accessibility to the stations.

    42/50

    Considerate Constructors Scheme score

    91%

    local labour

    230

    students engaged through curriculum-based activities

  • Almondbank Flood Protection Scheme

    Almondbank Flood Protection Scheme

    We installed flood defences to protect more than 150 properties from flooding from the River Almond and East Pow Burn.

    A history of flooding

    Almondbank and Lochty have experienced a long history of flooding from the River Almond and the East Pow Burn, with serious flooding events taking place in 1993, 1999 and 2011.

    With average annual flood damage estimated at £1.2 million by the Scottish Environment Protection Agency (SEPA), Perth & Kinross Council needed to invest in more robust flood defences to protect residential and commercial properties and infrastructure in the town of Almondbank.

    Project overview

    The Almondbank Flood Protection Scheme, proposed under the Flood Risk Management (Scotland) Act 2009 (FRMA), and awarded via the SCAPE Scotland Civil Engineering framework was devised to reduce the risk of flooding and provide significant long-term safety, social and economic benefits to the community.

    The project involved the creation of a series of flood defences and a temporary flood storage area that would provide protection for the area for a 1:200-year event. Our scope of works included:

    • Installation of 1,150 linear metres of sheet-piled flood walls
    • 1,600 metres of reinforced concrete flood walls
    • 50 metres of earth embankments
    • 2,000 metres of erosion protection measures
    • Raising and replacement of two vehicle access bridges
    • Relocation of the existing pedestrian bridge
    Protecting the environment

    The River Almond is a tributary of the River Tay and is designated a Special Area of Conservation. Before work could commence, we consulted with Government bodies to ensure our works met the legal and contractual requirements to protect this environmentally sensitive area.

    All risks associated with natural habitats, archaeology, recreation and amenities were minimised through early contractor involvement, data collection and ecological surveys. Some of the long-term environmental benefits of the scheme include the installation of bat and bird boxes in surrounding woodlands, tree planting and the creation of a new habitat for fish to spawn at Pow Burn.

    2,000metres

    of erosion protection measures installed

    £5.1million

    social value generated

  • Surf City Bridge, North Carolina

    Surf City Bridge, North Carolina

    The project replaces the existing truss swing-bridge with a 65ft vertical clearance bridge. Delivered 9 months ahead of schedule, the new bridge allows traffic to flow smoothly between the mainland and Topsail Island.

    Accommodating both marine and land travel

    The Surf City Bridge replaces an existing steel truss swing-span bridge that opened every hour to allow marine vessels across the Intracoastal Waterway (ICW).

    The new 29-span, Surf City Bridge has a 65ft clearance to accommodate marine traffic passing below without disrupting vehicle traffic above. It eliminates long lines of traffic during peak tourist season and also includes a pedestrian walkway.

    Setting the support girders

    Construction of the new bridge began just south of the existing swing-span bridge in October 2016. To set the first horizontal support girders, the team worked closely with the U.S. Coast Guard to shut down traffic on the ICW. Over the meticulously planned, two-day operation, the 81-tonne girders were moved to the temporary work trestle. They were lifted safely into place by two 275-tonne cranes.

    Phased delivery

    Phase one was the construction of the 29-span bridge, as well as new roundabout intersections, mechanically stabilised earth walls and approaches connecting the new bridge to the existing roadways on the mainland and the island.

    Phase two involved tying in the roadways and switching traffic onto the new bridge. During phase three we reduced the roads from three lanes to two and added a 10ft wide multi-use pedestrian path to the new bridge. The existing swing bridge was removed and all materials were recycled.

    65ft

    clearance to accommodate passing marine traffic

  • Hinkley Point C – Tunnelling and Marine Works

    Hinkley Point C – Tunnelling and Marine Works

    Balfour Beatty are delivering one of the most complex marine engineering projects currently taking place in the world to support the construction of the first new nuclear power station built in the UK in a generation.

    The project will see the construction of three tunnels under the seabed that will supply the two reactors at Hinkley Point C with cooling water and then discharge it back into the Bristol Channel.

    Our experts will use state-of-the-art technology to excavate a total of nine kilometres of tunnel, which will be lined with 38,000 concrete segments forming 6000 lining rings.

    The tunnels will be connected to the seabed by vertical shafts and capped with large intake and outfall heads, each weighing close to 5000 tonnes, that allow sea water to pass into the tunnels.

    Both the concrete segments and the heads are under manufactured to exacting specifications at a purpose-built state-of-the-art facility at Balfour Beatty’s site in Avonmouth, Bristol.

    Tunnelling

    Three Tunnel Boring Machines will use rotating cutting wheels to excavate two 3.5km intake tunnels and one 1.8km outfall tunnel. As the machine cuts through the rock it will line the tunnel with a ring of concrete segments.

    The first of the Tunnel Boring Machines commenced tunnelling in September 2019 and continue for 12 months to construct the first Intake Tunnel.

    A further 800 metres of underground access and service tunnels are also being excavated and reinforced using a method known as sprayed concrete lining.

    Outfall and intake heads

    The tunnels will be capped with four intake and two outfall head structures. The largest heads will be 44-metres long (roughly the length of four double-decker buses), around eight metres high and weigh in at just under 5,000 tonnes.

    These structures are the most complex and dense reinforcement structures across the Hinkley Point C Project.

    Marine

    A complex dredging campaign will prepare the seabed for the installation of six tunnel heads.  The heads will be transported by barge to the Hinkley Point C site from their construction site in Avonmouth. They will then be lowered into place by two of the largest marine cranes in the world, operating from barges bigger than a football pitch.

    9km

    of tunnel will be excavated

    38,000

    Concrete segments will be used to line the tunnels

    44m

    The length of the largest outfall and intake heads

  • The Bobby Moore Academies

    The Bobby Moore Academies

    Situated on the Queen Elizabeth Olympic Park in London, the new primary school and secondary school provide facilities for 420 and 1,120 students respectively and form part of the new community on the Olympic Park.

    The Bobby Moore Academy Primary School

    The new £11 million facility includes internal and external teaching spaces, a multi-use games area and extensive external landscaping. A terrace outside the main hall
    provides canal-side dining for the children and a small biodiversity area and a trim trail. The planting of new trees and hedges and the retention of as many existing trees as possible all help to create a pleasant environment.

    The location of the project means that a wide range of stakeholders had to be consulted and updated as progress was made. This included the Canal River Trust, the stadium management company and West Ham Football Club.

    The Bobby Moore Academy Secondary School

    Located on Stadium Island only 100 metres from the iconic Olympic Stadium, the £30 million school, pictured opposite, comprises of six storeys with a tall civic frontage
    toward the Olympic Park and projecting forms for the sports hall and assembly hall to the rear. The building is finished in a combination of light and dark brickwork in a weave pattern that creates interest to passers-by. Students who attend the school will benefit from extensive sports facilities including the adjacent community running track and athletics field.

    420

    primary school places

    1,120

    secondary school places

    100m

    from the Olympic Stadium

    £41m

    of new school buildings

  • Advanced Manufacturing Centre, Hong Kong

    Advanced Manufacturing Centre, Hong Kong

    Gammon, our 50:50 joint venture, is constructing a manufacturing facility for the Hong Kong Science & Technology Parks Corporation.

    We’re constructing the new nine-storey Advanced Centre which will offer low-cost production facilities for industries to embark on technological innovations. Our works include a two-storey basement, mechanical, electrical and plumbing services, the building façade and a new footbridge connecting the Data Technology Hub of the adjacent site.  

    A seawater district cooling system will be utilised to cool the entire building in a cost-effective and environmentally friendly way.

    To ensure the project’s safe and efficient delivery, Gammon will deploy a wide range of innovative technologies and methods including BIM, modularisation and off-site manufacturing techniques to improve safety and quality and contribute to a significant reduction in the duration of the works programme.

    Following the successful completion of Science Park Phase 3a, 3b and 3c, this impressive and complex facility for one of Gammon’s long-term customers is designed to meet the increasing need for high-end on demand manufacturing in the region.

    108,000

    square metres of new facility

    HK$4.75

    billion (c. £490 million) project value

  • Norton Bridge, Stafford

    Norton Bridge, Stafford

    Working adjacent to the West Coast Main Line, we installed Vibro Stone Columns to support approximately 1km of new road and railway embankments for a major new railway improvement scheme.

    The programme

    The Stafford Area Improvements Programme (SAIP) is a £250 million package that aims to improve capacity and performance on the West Coast Main Line. Balfour Beatty Ground Engineering is delivering the ground improvements at the Norton Bridge section of the project which aims to remove a major railway bottleneck. Using a combination of line speed improvements, re-signalling and the proposed introduction of a flyover at Norton Bridge.

    Norton Bridge phase

    The Norton Bridge phase of the works consists of 10km of new railway being installed, 11 new bridges being constructed, four river diversions plus pipeline, road and footpath diversions as well as a proposed introduction of a new flyover at Norton Bridge.

    Ground improvement

    Ground conditions comprised of loose, water-bearing sand and silt with some bands of soft clay so ground improvement was needed in a number of sections of the road and railway embankments to bear the load of future works. Multiple methods of boring were employed to ensure that the method suited the ground conditions. 

    Vibro-Stone Columns

    Two sections of embankment, totalling approximately 1km in length, required work. This included installing 11,290 Vibro-Stone Columns (approximately 48km in length).

    Vibro-Stone Columns were used because they improve the bearing capacity and reduce settlement in the ground. The columns act as drains in the soil and accelerate consolidation. They also offer improved overall stability of the embankments both during construction and in the long term.

    11,290

    Vibro Stone Columns used

    48km

    of Vibro Stone Columns

  • Balfour Beatty CLG

    Balfour Beatty CLG

    Balfour Beatty CLG proudly supports Ireland's world-class gas infrastructure by providing response, maintenance and construction services to Gas Networks Ireland.

    Balfour Beatty CLG was responsible for delivering maintenance and construction services to Ireland's gas infrastructure for Gas Networks Ireland over 10 years.

    Balfour Beatty CLG was established in 2011, as an incorporated joint venture, between Balfour Beatty and CLG Developments. Balfour Beatty CLG employed 330 people across the country working to the highest standards of health, safety and quality.

    The Networks Services Works Contract (NSWC) covered the following sections of Gas Networks Ireland activities:

    • Distribution construction
    • Distribution and telecom maintenance
    • Site works
    • Steel skid services
    • Meter reading
    • Network maintenance
    • Transmission construction
    • Reinstatement

    688,000

    customers across Ireland

    230,000

    monthly meter readings

  • Crossrail West Outer Section

    Crossrail West Outer Section

    We designed and implemented major track and electrification improvements to the Great Western railway.

    Our multi-disciplinary teams delivered a range of works for the vital Crossrail project – the new high frequency, high capacity railway connecting London and the South East.

    We implemented major track works, civil engineering and Overhead Line Electrification (OLE) for the West Outer section of the line at West Drayton, Slough and Maidenhead.

    We constructed and commissioned all track remodelling works, including two new bridges and the design and build of OLE systems.

    This line ensures efficient, reliable rail services through the capital. Our electrification works provide a cleaner, quicker train service between Maidenhead and London Paddington. This project is also a key component of the on-going electrification of the Great Western Route.  

    Innovating for efficiency

    Our in-house design teams carefully planned the creation and delivery of the OLE works on site. To do this, we brought together complex material logistics, component types and engineering data into one single system, or ‘Workbank’, to coordinate the works. This innovative tool allowed us to complete works efficiently and on time.

    Construction of OLE is a high risk activity, involving working at height and significant manual handling. To ensure safe delivery, the teams worked to engineer out risk wherever possible. For example, we developed a bespoke tool to lift OLE steelwork into place, rather than manually lifting the equipment.

    We also successfully moved the scheduled completion date forward through large-scale materials management and accelerated design processes, along with successfully re -sequencing of track works.  To ensure minimum disruption to passengers throughout the project, the majority of core engineering works were completed while train services continued.

    £64

    million project

    12.5mile

    rail line

  • A21 Tonbridge to Pembury dualling

    A21 Tonbridge to Pembury dualling

    We created a new dual carriageway and flyover to speed up journeys, improve safety and boost the local economy – benefitting over 35,000 drivers a day

    We delivered a series of vital upgrade works to the A21 between Tonbridge and Pembury in Kent. The project included widening the road into a dual carriageway, adding two new junctions and creating a flyover to reduce congestion and ensure smooth journeys for road users.

    This challenging project was located in an Area of Natural Outstanding Beauty with significant cultural heritage. We used state-of-the-art technology and extensive expertise to ensure safe, environmentally sensitive project delivery.

    For example, we used innovative Microsoft Hololens technology to support the design of a new footbridge on the scheme. The mixed-reality headset and visor enables users to visualise an asset before it has been built, providing the opportunity to foresee any challenges which might arise. 

    Increasing biodiversity on site

    The road improvements were carried out to the highest environmental standards to protect the beautiful, protected countryside alongside the road.

    Rather than removing ancient woodland and the seed-rich topsoil from the site, our expert teams gently moved the trees and soil to a nearby area using the latest techniques. The hope is that the area’s ecological make up will be preserved.

    New areas of heathland are being created in addition to 6 metres of high temporary fencing to help guide bats travelling over the new road while new planting becomes established. We also installed 900 metres of noise barrier environmental fencing and four wildlife ponds during the project. An ancient barn has been carefully taken down and is now being reconstructed and preserved at a heritage museum.

    Throughout the duration of the project, the scheme created 11 graduate placements, five apprenticeships and six work experience placements. The Balfour Beatty site team has also helped over 200 school children to understand road safety by providing talks to local schools surrounding the project.

     

    35,000

    drivers a day

    23

    opportunities for the next generation

    9 hectares

    translocated woodland

  • Gateshead Energy Centre

    Gateshead Energy Centre

    We have delivered one of North East England’s first energy centres, generating and supplying power and heat for public buildings, homes, a college and businesses across the local area.

    The innovative Gateshead District Energy Centre will provide residents with cheaper power and heat whilst also reducing demand on the national grid. The complex project will underpin the future redevelopment of the town centre, stimulating investment and creating new jobs.

    The centre is designed to supply efficient, low cost heat and power to the local area via 2.5km of heat and private wire network. 4MW of gas-fired Combined Heat & Power (CHP) units will now support the local energy demands.

    Our sub-brand Balfour Beatty Kilpatrick provided all building, mechanical and electrification works for the project while our gas and water business delivered a 1.3km heat network extension to the town’s leisure centre and library using underground insulated plastic heating pipes for the first time in the UK.

    A model for the future

    The scheme has set the blueprint for the next generation of decentralised district energy generation and distribution utilising thermal stores and 3MW of battery storage.

    Local power production lessens demand on the national grid whilst also decreasing energy costs, lowering carbon emissions and improving fuel security. The centre is twice as efficient as a conventional power station, and those efficiencies can be passed on to customers in lower costs, lower carbon energy usage, which is also lower carbon emissions.

    The design future-proofs energy generation with the flexibility to embrace alternative renewable energy sources. The system is designed to respond to the expected substantial increase in customer demand estimated to take place in the next five to ten years.

    The scheme is currently supplying public buildings and homes managed by the Gateshead Housing Company.

     

    2.5km

    energy network

    4MW

    gas-fired CHP units

    2,900tonnes

    reduced carbon emissions

  • Tadcaster bridge

    Tadcaster bridge

    We used a combination of traditional techniques and 21st Century technology to rebuild this vital transport link for residents and local businesses.

    On December 29th 2015, a devastating flood hit the River Wharfe, Tadcaster, resulting in the partial collapse of the Grade II-listed bridge that connected two halves of the town.

    In order to reconnect the community, Balfour Beatty was contracted by North Yorkshire County Council to clear debris from the site and rebuild the damaged bridge, which was originally built in two parts in the 16th and 18th Century. Part of the works also included installing a temporary footbridge while the permanent structure was being repaired.

    Modern technology and traditional techniques

    This challenging job included establishing a suitable location for the temporary bridge, as well as building the structure in ground conditions that were very unpredictable. We overcame this by installing a pre-constructed single-span bridge which was extended section by section across the river.

    We then carefully demolished and reconstructed the flood damaged stone bridge and pier. We used a 3D laser scan of the bridge and surrounding area to give us pinpoint accuracy when designing the detailed and complex temporary works. This enabled us to re-create what had been damaged and establish the exact dimensions for reconstruction. From this we produced a framework for the archways that fitted perfectly, reducing time and cost.

    Alongside this cutting-edge technology, we also employed traditional materials and masonry to reconstruct the bridge as it was originally built. The project met challenging timescales by completing the temporary footbridge in February 2016 after only six weeks, and fully opening the rebuilt road bridge in February 2017.

    16-18th

    Century bridge

    Grade II

    listed building

  • Remodelling London Bridge station

    Remodelling London Bridge station

    We are helping to ease congestion and improve journeys at one of London’s busiest rail stations.

    At 180 years old, London Bridge is London’s oldest surviving rail terminus. It’s also one of the capital’s busiest, with over 50 million people a year passing through or completing their journey at the station.

    Working closely with our customer, Network Rail’s Thameslink Programme, we are modernising the railway systems that run between London Bridge and New Cross Gate to the south. Our works include remodelling track, electrification and minor civil engineering infrastructure across the four-mile stretch.

    By transforming this section of railway, we are helping to open London Bridge station up to more frequent, longer trains. The project will ease congestion and improve the journeys of the thousands of passengers who use the station daily.

    Keeping London moving

    During this five year project, we will deliver a complete, multi-disciplinary solution that includes design, construction and the necessary plant and machinery. Once complete, we will have installed circa 35km of plain line track, 140 switches and crossings, more than 100 signal structures and over 100 kilometres of cabling.

    The work includes the installation of track and electrification for several new platforms, connecting these to the existing infrastructure, as well as removing old trackwork, restoring existing civils structures and dealing with signalling equipment in readiness for the next stages of development.

    Our in-house design teams have developed innovative methods of working on such a complex site. This includes operating close to live tracks with limited access points, as well as lifting large structures across the 40m-wide Victorian viaduct that supports the rail tracks.

    These works will ensure train operators can provide the high frequency services needed for such a busy interchange, with works taking place alongside live tracks that will continue to run throughout the project.

    1836

    was the year the station first opened

    35km

    of new track

    140

    new switches and crossings

    50million

    people use London Bridge Station each year

  • Fylde peninsular coastal defence programme

    Fylde peninsular coastal defence programme

    We used innovative construction methods to build the UK’s largest coastal defence scheme.

    We delivered two major coastal defence schemes at Rossall and Anchorsholme near Blackpool, significantly reducing the risk of flooding to the local community. These two schemes formed the Fylde peninsular coastal programme, the largest project of its kind in the UK. The programme saw the construction of over 2.9km of coastal defences, replacing the original seawalls built in 1930.

    Led by Blackpool Council and Wyre Council, this project protects 12,500 homes and businesses and has a design life of 100 years.

    We used a variety of expert techniques across both sites to ensure lasting protection from high tides. At Anchorsholme, we installed over 2,000 pre-cast revetment units, each weighing 14 tonnes. Forming a key part of Anchorsholme’s protection, these revetments are topped with a raised highway and promenade for pedestrians. At Rossall, the seawall was built using 280,000 tonnes of rock, 2,762 precast concrete units and 28,000m3 of concrete poured onsite.

    A first for the UK

    As the largest coastal defence scheme in the UK, this project called for innovative construction methods to ensure success. We used Building Information Management (BIM), drone technology and advanced 3D modelling at both sites – from the design development stage and throughout construction – to create a virtual environment to mitigate risks and manage the works prior to construction. We trained both Blackpool and Wyre councils to use BIM for asset management purposes including on-going operations, maintenance planning and monitoring.

    The scheme produced many benefits to the local community including apprenticeships in engineering, quantity surveying and administration, as well as work experience for local people. It was calculated that for every £1 spent with us, an average of £2.08 was generated in the local economy.

    12,500

    properties protected

    £90million

    project

    100

    year design life

  • Chamberlain Halls of Residence, University of Birmingham

    Chamberlain Halls of Residence, University of Birmingham

    This modern, energy-efficient building offers spacious housing for students.

    We were contracted to provide a sustainable, modern student residence for the University of Birmingham. The project played a key role in reaching the University’s sustainability targets, building on a 20% reduction in carbon emissions across the campus.

    We created 725 bedrooms over one 21-storey tower block and three low-rise buildings. Using Building Information Management (BIM) during the planning stages, we ensured value engineering and long-term management solutions.

    A team effort

    Balfour Beatty Ground Engineering carried out initial piling works, with Balfour Beatty Kilpatrick providing bespoke pre-fabricated mechanical and electrical units. These units housed ducting, cabling and pipe-work for the building and could be installed quickly on-site ensuring construction was completed within a 103 week programme.

    Chamberlain Halls reached the highest Government approved Energy Performance Certificate (EPC) rating. The building achieved a category ‘A’ certificate for energy efficiency through the use of brick cladding for insulation, a copper rain screen and glazed curtain walling to reduce heat loss.

    During construction, we delivered a series of talks to engineering students to ensure that they benefited from having a live project on campus. We also provided a week-long module for engineering students, teaching them to plan a temporary works site complete with risk assessments, method statements and safety measures.

    Through our partnership with the University we provided placements to students who gained on-site experience.

    Completed in103 weeks

    725 bedrooms

    £40.5million

    contract value

    72m high

  • North Ayrshire Community Hospital, Scotland

    North Ayrshire Community Hospital, Scotland

    We constructed a vital hospital for the local community, creating a patient-centred and flexible healthcare facility.

    We financed, designed and built the NHS Ayrshire and Arran’s Acute Mental Health and Community Hospital, located in Irvine in the west of Scotland. This integrated mental health and community development offers a full range of inpatient and outpatient facilities, including 206 beds for inpatients requiring a range of care. The hospital provides services that include adult mental health, addiction inpatient services, rehabilitation and re-enablement services, elderly mental health and long-term support.

    We created state-of-the-art accommodation and landscaped courtyards to ensure patient comfort. The layout of the wards was carefully designed to provide a comfortable space for patients and staff. Design features include corridor seating areas overlooking outdoor landscape, customised signage and carefully selected colours, artwork and way-finding to help stimulate the memories of patients.

    The project was designed to create an accessible, inspirational facility, using the latest technology to deliver sustainable solutions for our customer. The facility was recognised by the Building Better Healthcare Awards, achieving the Building Class ‘Award for Mental Health Development’.

    Balfour Beatty Investments will operate the concession for the facility over 25 years.

    A hands-on approach

    Throughout the project, we worked with the local community to engage residents and provide employment opportunities. We created 18 apprenticeships, work experience placements and local careers events. We also ensured that the majority of the contract spend was focused on engaging Scottish-based companies.

    80%

    local spend

    18

    new apprenticeships

    206

    inpatient beds

  • Holyrood Student Accommodation

    Holyrood Student Accommodation

    Student Accommodation designed to engender community and choice of room type and price.

    Holyrood is a postgraduate village at the University of Edinburgh comprising eight individually designed buildings, eight accommodation types and 10 price points. The accommodation includes: cluster flats, residence hall, twin rooms, studios, en-suite/non en-suite rooms, garden rooms and large rooms. Twins and shared bathrooms all add positively to student choice – in particular on price.

    Balfour Beatty completed the final phase of the project and the 2016/2017 academic year saw 1,200 postgraduates residing in the new Holyrood Development.

    The construction team was led by Balfour Beatty's Scottish arm of UK Construction Services, with the mechanical and electrical input being provided by Balfour Beatty Kilpatrick. To ensure time, labour and cost efficiencies, the on-site Construction team utilised a ‘just in time’ delivery programme. This, coupled with off-site pre-fabrication, ensured delivery of a high quality product.


    The Postgraduate Residence Hall

    At its centre is the unique self-catered Residence Hall (RH), where 480 students cook, dine and socialise together - a UK, and possibly European first! The RH is based on the premise that not all students want to live with only a handful of others, or alone.

    Each floor has its own lounge, linked internally to the floor below, allowing one quieter space and another more active space, where two floors of residents can mingle. 

    The RH opened in September 2015 and comments from residents have been extremely positive. Sharing and cleaning issues have been minimal.

    “Throughout the delivery of the Project, Balfour Beatty and the University of Edinburgh have worked closely to deliver a world class facility. This delivery is underpinned by the knowledge that we have all worked to deliver a facility that is definitely built to last."


    Dom Gallagher
    Project Director, Holyrood Student Accommodation SPV Ltd

    1,200

    postgraduate students

    8

    accommodation types

  • Westminster Bridge Road

    Westminster Bridge Road

    We delivered state-of-the-art student accommodation on the banks of the river Thames.

    This 19-storey building houses modern student accommodation across 1,092 bedrooms. The facility is situated near both the South Bank Conservation Area and the Westminster World Heritage site in the heart of London.

    Modern living

    The £80 million project also accommodates a new 6000m2 sixth-form college, occupying the first 3 floors of the building, as well as an 800m2 health suite with swimming pool and gym. Alongside these services, the building also provides affordable office space.

    The accommodation floors include photovoltaic panels and combined heat and power technology to achieve a BREEAM ‘Excellent’ rating. Innovative modular off-site construction techniques were used to create bathroom pods and a cladding system, for a quicker and safer construction programme.

    Local efficiencies

    The project included a variety of employment and training initiatives. We created a range of apprenticeships to ensure tangible benefits for the local community. At construction peak, the project employed 500 people on site.

    The building is located on one of London’s busiest roads, as well as being in close proximity to a busy railway line. We carefully planned site logistics and efficiently timed our procurement processes to overcome site restrictions.

    “The mix of student residential, business, education and leisure uses all on one site will provide a welcome boost to the local economy and deliver an important element of the wider regeneration of the Waterloo area.”

    Johnny Manns
    Managing Director, Urbanest

    1093

    student beds

    £80

    million project

    38,500m2

    development

  • Wind Farm Foundations, Ballybane, Cork, Ireland

    Wind Farm Foundations, Ballybane, Cork, Ireland

    Our concrete repair specialists used a variety of expert techniques to repair the foundations of this onshore wind farm

    Balvac's specialist services were used to keep the turbines stable, minimising safety risks and ensuring they produced the required amount of energy.

    The turbines are held in place by a steel ‘can’ embedded into a concrete foundation. We were contracted to repair and reinforce this concrete, helping to keep the turbines secure and ensuring they continue to produce energy. The work was carried out over a three-week period and ensured the smooth operation of the turbines.

    We removed damaged concrete from the ‘can’, using precise drilling to access the base of the foundation. We strengthened the remaining concrete by injecting a specialist epoxy resin. The structures were then reinforced and protected from future damage using corrosion inhibitors and specialist sealants.

  • Whitelee Wind Farm

    Whitelee Wind Farm

    We delivered all the electrical infrastructure needed to power Europe’s largest onshore wind farm.

    Balfour Beatty Kilpatrick provided extensive electrical and control systems for the 57km2 wind farm, as well as a 75 turbine extension to further increase generating power.

    We were responsible for the design, supply, installation and commissioning of these systems. The contract included switchgear and over one million metres of cabling for 140 turbines, capable of producing 322MW of energy. As part of this project, we designed and built a new 275/33kV connection substation to connect the wind farm to the Scottish Power transmission network.

    Powering on

    Following this initial project, we were contracted to extend the wind farm, increasing its generating capacity. We delivered all electrical works for 75 extra turbines, capable of providing enough power for the equivalent of up to 300,000 households.

     

  • The Green, Bradford

    The Green, Bradford

    We provided a range of mechanical and electrical engineering works for this eco-friendly student accommodation village in Bradford, UK.

    The University of Bradford contracted Balfour Beatty Kilpatrick to deliver an environmentally sound set of works to create efficient, sustainable student living. The ten-block village provides study bedrooms, communal laundry facilities, offices and student facilities. The new complex is also used to educate and inform students about sustainability.

    A range of works

    We delivered all ventilation systems, fire alarms and CCTV throughout the campus. A state-of–the-art energy centre was built to house all of the plant and equipment required for the building’s systems and we provided a variety of underground site services, including gas, water, electricity and district heating. We also installed data and TV cabling, as well as access control and a Building Management System.

    A model village

    As the first student accommodation in the country to achieve BREEAM Outstanding rating, The Green is considered a blueprint for eco-friendly living.

    We met strict customer requirements, designing a mechanical and electrical package that included a rainwater harvesting system, a combined heat and power pump system and a solar thermal hot water system. All of these contributed to making the building more efficient, cost-effective and environmentally friendly.

     

     

     

    £6 million project

    21month duration

    1,026 bedrooms

  • The Sainsbury Laboratory

    The Sainsbury Laboratory

    We delivered a range of mechanical and electrical installations for a new, complex research institute studying plant growth and development systems.

    The high specification mechanical and electrical (M&E) services we installed in the Sainsbury Laboratory ensure world-class conditions for leading scientists, mathematicians and chemists. We also provided a comfortable environment for support areas, meeting spaces, a café and an auditorium. Our core M&E services ranged from a rainwater harvesting and water monitoring system to electrical systems including photovoltaic panels, photocell controlled lighting and general power.

    A smart space

    We used off-site construction to prefabricate the main plant room. We then transported it to site in sections ready for installation, reducing man-hours on site and ensuring work went according to schedule. This smart system of working significantly reduced waste and enhanced quality control.

    We delivered a clean, uncluttered facility, receiving a BREEAM Excellent certification for the project.

     

    £13 million contract

    18 months duration

    11,000 square metre facility

  • Rhuddlan Castle

    Rhuddlan Castle

    Balvac repaired this 13th century castle in North Wales, helping to preserve the historic ruin for future generations.

    Working with conservation and archaeological specialists, we employed a number of techniques to combat the inclement weather and strong coastal winds weakening the castle’s sandstone walls.

    Cracked lintel stones above window openings were pinned following resin injection to prevent further damage and to provide support. We stabilise weak and weathered stones by covering the surface of the walls with a low viscosity sealant. We tied loose masonry in place to prevent falling debris before filling in the joints with mortar and resin, ensuring a longer lifetime for the castle.

    Follow this link for more information on Balvac.

  • Queen Elizabeth Hospital, Birmingham

    Queen Elizabeth Hospital, Birmingham

    We used our expert range of engineering and construction capabilities to deliver a complex NHS facility.

    We designed and constructed this RIBA award-winning health campus, transforming healthcare provisions in Birmingham and the West Midlands. The Queen Elizabeth Hospital is one of the UK's largest healthcare sites and is home to two important NHS trusts. We created a modern environment to enhance service and ensure patient wellbeing.

    With the demands of this busy hospital in mind, we developed and implemented an innovative ward design. Each ward is made up of a series of clusters, which can be combined if necessary to accommodate more patients. All facilities and lifts are positioned expertly for ease of transport and communication between wards. The campus-style layout includes a new 1,213-bed acute hospital, a 137-bed specialist psychiatric hospital and teaching facility, as well as a 21-bed mental health resource.

    An all-round approach

    Over the course of the project, we delivered a wide range of collaborative skills including PFI funding, construction, mechanical and electrical installation, civil engineering and facilities management. 

    The project was completed on time with several elements delivered early. Our offsite manufacturing facility, Off-site Solutions, helped deliver several sections ahead of schedule. This included the design, manufacture and installation of 600 shower and WC pods, 300 ward modules and 1,800 modules of ducting, pipe work and cabling. This modular approach greatly reduced the need for onsite operations such as hot works, manual handling and working at height. Our in-house piling business, Balfour Beatty Ground Engineering delivered 2500 450mm and 600mm diameter CFA piles as well as precast, steel tube and mini piles.

    Bright, welcoming and calm, the design of the new hospital is specifically focused around the needs of patients and visitors, making a hospital visit as easy and pleasant as possible.

    “We’ve got a fantastic facility. It’s not just fantastic for the staff that work here or the patients of Birmingham. We treat patients from all over the UK, and actually beyond our own shores, and finally they’ve got the hospital they deserve.”

    Morag Jackson
    PFI Project Director, Queen Elizabeth Hospital Birmingham

     

    2,274,014 hours

    on site without an accident

    63%

    of workers came from within a 15-mile radius

    98%

    of demolition waste was recycled

  • M4/M5 Smart Motorway

    M4/M5 Smart Motorway

    We delivered south west England’s first Smart Motorway, installing state-of-the-art technology to improve journeys.

    As Smart Motorways, the M4 and M5 now respond to traffic conditions to ensure road safety and increase traffic capacity. Innovative cables beneath the road relay information to responsive signs, varying speed limits according to the driving conditions. The hard shoulder is also made available to traffic at particularly busy times of the day.

    A smooth journey

    We refurbished seven existing gantries over the roads and installed 33 new structures, as well as creating six emergency refuge areas.

    We also resurfaced over 14 miles of carriageway, installing more than 30 miles of fibre optic cables that transmit the information used to regulate traffic.

    Safety innovations

    Our team developed a unique programme to prevent construction workers being injured while working in close proximity to heavy plant and machinery. Our ‘Zone In’ training workshop included the use of life-sized models, real machinery, on-site video footage of risky behaviour and reconstructions of major incidents. It contributed significantly to the project’s outstanding safety record.

    Achievements
    • 2013 BCIA Award for Safety Excellence

    • Highway’s Agency inaugural National Major Projects Framework Safety Recognition Award 2013

       

     

    £88.6 million scheme

    30

    miles of fibre optic cables installed

  • The National Graphene Institute

    The National Graphene Institute

    Winner of the H&V News 'Building Services Project of the Year' award, the Institute provides research space with specialist laboratories and offices

    Our Balfour Beatty Kilpatrick business delivered all of the mechanical and electrical services for this award-winning building. As a laboratory, the Institute demanded a complex system to deliver close control of temperature, humidity, pressure, vibration and electromagnetic interference.

    The building also needed facilities to deal with special requirements such as ultra-pure water, specialist gases, vacuum, compressed air and solvent and acid extraction systems.

    Designed for the future

    Our works included ventilation, heating, cooling, domestic hot water, power, lighting, data, fire detection, security and building management systems.

    Using Building Information Modelling, we eliminated waste and re-work by spotting service clashes before work began. Modules manufactured off-site at our Off-site Solutions factory were delivered ready to install, including multi-service corridor modules, plant skids and lab bulk heads that incorporate localised air handling units, pipework, containment and ductwork.

    Energy efficient building systems

    As well as meeting stringent technical requirements, the mechanical and electrical installation also employs a range of energy and resource conserving solutions. This includes reclaiming heat from ventilation to pre-heat the air supply, harvesting rainwater and using extensive energy metering. Photovoltaic cells and lighting control systems further limit energy waste.

     

    £15 million contract

    7,600square metre facility

  • The Shard foundations

    The Shard foundations

    Using multiple piling techniques, we installed over 160 piles to support this 87-storey iconic London skyscraper

    At 310 metres high, the Shard is the tallest building in Western Europe. Balfour Beatty Ground Engineering delivered complex piling works for main contractor Mace, forming the first phase of the £2 billion London Bridge Quarter regeneration works.

    A heavy load

    Working on the site of an existing tower block, our design team developed an innovative solution to overcome the obstruction of existing piles. Secant piles were used to form a retaining wall and carry the vertical load of the structure. A range of firm and structural piles up to 1.8m diameter were also installed at depths of 25 to 50 metres.

    We employed a top-down method that allowed us to continue piling work as construction began on the building. Using a unique hydraulic frame, we installed plunge columns of multiple sizes, increased the vertical tolerance of the piles and reduced the overall programme by six months.

    Related video content:

    £12 million project

    8 month duration

    166 load bearing piles

  • A3 Hindhead Tunnel

    A3 Hindhead Tunnel

    We constructed the longest under-land road tunnel in the UK, protecting an important area of scientific interest and returning site to its natural roots.

    As part of a 6.8km dual two-lane carriageway, the £371 million Hindhead tunnel was designed to relieve local traffic. The site was also responsible for returning The Devil’s Punchbowl, a site of special scientific interest, to its natural state.

    Careful consideration

    We were involved in the scheme at a very early stage to prepare the design and site planning. This helped us build in cost effective innovation from the start of the project as well as ensuring all environmental concerns were addressed at the right time.

    One of the first actions was to remove the wildlife from the construction site, a process that saw 171 reptiles including slow worms, adders and lizards carefully moved to suitable locations. The local population of dormice, badgers, deer, foxes and rabbits were encouraged into new homes.

    Thinking ahead

    The project is ‘tree neutral’, with more than 2,173 tonnes of timber removed and replaced by more than 200,000 native-species trees and shrubs. 330,000 cubic metres of earth was reused as embankments, in landscaping and noise-reduction banking.

    Once the tunnel was opened, the relevant part of the existing A3 was closed and returned to heathland.

    Achievements
    • 2012 Overall winner, ICE Thames Valley Engineering Excellence Awards

    • 2011 Preservation Award, Tunnels and Tunnelling Awards

     

    6.8km

    dual two-lane carriageway and tunnel

    62%

    average local employment rate achieved

  • The Lighthouse

    The Lighthouse

    Restoring an iconic London building to its former glory

    We transformed the historic Lighthouse building into a modern office space, preserving a range of important architectural features that included the original façade and the iconic lighthouse itself.

    A delicate balance

    The structure is located above underground rail tunnels and any major change in weight could have caused damage to the railway below. Using innovative techniques such as laser scanning and an expertly planned construction sequence, we ensured there was no disruption to passengers. These techniques also allowed us to extend the building by a floor and a half to accommodate extra office space.

    We repaired and cleaned the original façade, isolating it from the new internal structure to eliminate vibrations and noise from the trains below.

    Restoration and repair

    Throughout the project we worked closely with Historic England, the public body that looks after England's historic environment, to ensure the regenerated building met their high standards. All timber was restored by hand and the building’s distinctive weathervane was repaired to ensure the finished result reflected the structure’s important heritage.

    “The Lighthouse has been a very complicated project. I have had the help of an inspiring professional team as well as a great contractor. It is a project that I will forever be proud of.”

    Nick Capstick-Dale, UK Real Estate

    1865m2

    office and retail space

    Grade II

    listed building

    1875 -1895

    date of original construction

  • Project Hercules, MOD Lyneham

    Project Hercules, MOD Lyneham

    We created a state-of-the-art training college for the armed forces, developing the local economy and engaging with the local community.

    We designed and constructed this new military base and advanced training facility for the Ministry of Defence, working together with our joint venture partner, Kier. The project included detailed design work, demolition, extensive construction, refurbishment of existing buildings and landscaping of the surrounding area.

    We delivered new accommodation for military trainees and enhanced training areas, as well as creating a multi-use games area and new sports pitches. The project called for the refurbishment of 36 existing buildings including three hangars and a church. A vacant airbase nearby was also regenerated, becoming an outstanding outdoor training space.

    A Herculean effort

    This development has boosted the local economy and encouraged engagement with the surrounding communities. At construction peak, the project employed 1,350 people including service leavers and injured ex-military personnel.

    We spent two days with pupils at Lyneham Primary School to educate students about the site. During this visit, we helped construct a conservation area, carried out a plant demonstration and took part in a school assembly.

    As part of the redevelopment works, we also created a public memorial garden to pay tribute to servicemen and women.

    “MOD Lyneham is a fantastic place to train our military personnel. We’re all proud of the contribution we’re making to the Armed Forces – the Defence Infrastructure Organisation’s purpose is to support the armed forces by providing what they need to live, work and train and this project ticks all three boxes in one development.”


    Air Vice-Marshal Elaine West
    DIO’s Director of Projects and Programme Delivery

    56,000 m2

    of new buildings

    73,000 m2

    of major refurbishment

    £158million

    contract value

  • The Diamond, University of Sheffield

    The Diamond, University of Sheffield

    We designed and built an innovative educational facility that will inspire the next generation of engineers.

    The Diamond, home to the University of Sheffield’s faculty of engineering, is a £50 million world-class teaching facility. We delivered this complex design and build project from the initial ground engineering grouting and piling phases through to commissioning the services installation.

    The six-storey Diamond includes specialist laboratories, lecture theatres, large scale flexible teaching spaces and integrated formal and informal learning environments. It provides 5,000 study spaces, as well as a chemical engineering pilot plant and analytics laboratories, an aerospace simulation lab and a virtual reality suite.

    Our in-house piling company, Balfour Beatty Ground Engineering, installed 214 rotary bored piles through weak rock and coal seams to support the new building. Using our experience in developing iconic buildings, we created the facility’s impressive façade by producing an exoskeleton suit made up of over 10,000 anodised aluminium components. This reflects the surroundings and gives the building its name.

    A priceless opportunity for students

    The Diamond was built to offer an unrivalled student experience.

    Throughout the construction phase, over 750 engineering students were given a unique opportunity to learn onsite. Many students also attended Building Information Modelling (BIM) sessions to experience first-hand the innovative design and modelling tools used.

    A ‘building as a laboratory’ - this efficient facility allows students to understand how the building consumes energy in real-time thanks to sensors placed throughout the building. These sensors will also allow the University to monitor progress towards its target of reducing carbon emissions by 43% by 2020.

    £50million

    contract value

    750

    engineering students visited the site during construction

    19,500m2

    floor space

  • Thames Water - AMP6

    Thames Water - AMP6

    Ensuring a secure, reliable water supply to its 9 million customers across London and the Thames Valley

    eight2O Alliance

    Every day, Thames Water supplies around 2.6 billion litres of drinking water to 9 million customers across London and the Thames Valley.

    In 2013, Balfour Beatty, in joint venture with Skanska and MWH Global (SMBJV), was selected as one of two partners to deliver Thames Water’s AMP6 Alliance for Capital Delivery.

    The SMB joint venture will play a key role in delivering one of the largest and most varied water infrastructure programmes in the UK, providing design-and-build solutions for the development and delivery of the £2 – £3 billion alliance programme.

    The contract began in May 2013 with the 23-month Early Contractor Involvement (ECI) phase, in preparation for the start of AMP6 delivery which runs from April 2015 to March 2020. This is a fantastic opportunity for us to work closely with Thames Water, providing advice based upon our in depth knowledge of delivering similar water contracts and to support our client in making the best investment decisions.

    The scope of works includes clean water network repair, rehabilitation, maintenance and leak detection, along with wastewater and water connections for developers, new sewers and mains, as well as planning and design work.

    The work carried out by Balfour Beatty as part of the Alliance (now known as eight2O) will ensure that Thames Water can continue to provide the secure, reliable water supply to its 9 million drinking water and 15 million wastewater customers across London and the Thames Valley.

    1.2 million

    The number of manholes in the Thames Valley region

    9 million

    The number of drinking water customers in London and the Thames Valley

    31,300km

    of water mains

    109,000km

    of sewers

  • Construction Industry Council Headquarters, Hong Kong

    Construction Industry Council Headquarters, Hong Kong

    Hong Kong's first zero carbon building

    The challenge

    67% of Hong Kong’s 'greenhouse gas' emissions are associated with electricity generation and buildings account for 90% of that electricity. This compares with a global average of 40% for electricity usage in buildings. Hong Kong’s government is aiming for a 50% reduction in carbon intensity by 2020, relative to a 2005 baseline.

    The Measures

    Gammon’s latest project, a US$19 million 5,000m2 two-floor building, is dwarfed by the spectacular high rises that surround it. Yet, it has a significance that belies its size, representing Hong Kong’s entry into the low carbon economy.

    Built for the Construction Industry Council in just 11 months, the building will offset both embodied carbon and operating carbon over its design life by producing more energy than it consumes. 225 MWh of electricity per year will be generated on site, of which 30% will come from solar panels and 70% from bio-diesel made from locally sourced cooking oil.

    The building is constructed from low carbon and low impact materials including concrete with recycled aggregate and FSC timber. BIM technology was used extensively to minimise waste, by determining the precise volume of cut and fill, and by eliminating rework arising from coordination errors.

    The results

    The building achieved the Grand Award for a building under construction at the Hong Kong Green Building Awards 2012.

    225 MWh of electricity per year will be generated on site, of which 30% will come from solar panels and 70% from bio-diesel made from locally sourced cooking oil.

    67%

    of Hong Kong's GHG emissions are associated with electricity generation

    225 MWh

    of electricity per year will be generated on site

    30%

    of electricity is to come from solar panels

    70%

    of electricity is to be produced from biodiesel made from locally sourced cooking oil

  • West Island metro line

    West Island metro line

    Minimising impacts for an underground railway in one of the world’s most densely populated areas

    Keeping the noise down

    During 2010, we won three major contracts from Hong Kong's Mass Transit Railway Corporation (MTR) – including the largest in its history.

    Together, they meant that our Hong Kong-based joint venture, Gammon, built the majority of the island's West Island Line, including all three new stations and 2.2km of its 3km tunnels.

    We used innovative solutions and our engineering and construction expertise to minimise impacts on traffic, the environment and the local community.

    Why choose us? A key reason was our commitment to minimise impacts as we carved out an underground railway in one of the world's most densely populated areas. Our innovative approach included:

    • Elaborate shielding and electrically driven equipment rather than diesel engines which set new standards in noise and dust suppression
    • A self-compacting concrete to use in the above-ground structures, which results in less noise
    • 80% of tunnelling spoil travelling by conveyor belt to barges for re-use (mainly on reclamation projects within Hong Kong), so minimising the impact on traffic and the environment
    • Underground crushers to feed the conveyors, further reducing noise and dust

    On the largest contract, we have agreed with MTR to share the benefits of cost savings and the cost of any overruns, using a target-cost contract form.

    Together, the three contracts are worth over £500m – making the West Island Line the largest civil infrastructure project Gammon has ever worked on. In the past decade, Gammon has built more underground stations in Hong Kong, Singapore and Thailand than anyone.

    "Gammon was not awarded this project on price; it was because the customer liked our proposed methods and our track record with similar projects."

    Brian Gowran

    Project Director for the Kennedy Town Station and Overrun Tunnel project, Gammon

     

    2.2km

    of tunnels

    80%

    of spoil for re-use

  • Vineyard Surface Water Treatment Plant

    Vineyard Surface Water Treatment Plant

    The Vineyard project is a model of care for the environment, Zero Harm, recycling and protection of endangered species

    The challenge

    Balfour Beatty's largest US self-perform contract ever, the $207m Vineyard Water Treatment Plant in Sacramento County, California, is a model of earth-friendly construction and sustainability.

    Work began in March 2008 and wrapped up in 2012. The plant, which includes a 7,000 horsepower pump station, receives its water from the Freeport Water Intake Facility, another major Balfour Beatty project. The Vineyard facility is designed to treat 50 million gallons of drinking water per day.

    The measures

    Before the plant could begin pumping water out to the community, the California Department of Health Services had to certify the facility. During this water quality testing, Balfour Beatty Infrastructure treated and released more than a billion gallons of test water into nearby waterways, which were free of all environmental incidents.

    The workers also had a neighbour to watch out for the Swainson’s hawk. These birds of prey, which subsist on a diet of grasshoppers and dragonflies, are on California’s list of threatened species. A nest on the corner of the site forced the team to exercise caution and remain hundreds of feet away at all times. That care paid off: Each year of the project, the hawks had hatchlings occupying the nest.

    The team took pains throughout the course of the job to recycle as many discarded materials as possible: 75 percent of the project’s waste was diverted from landfills to be recycled. On the worksite, dumpsters were designated for waste, others for such recyclable materials as metals and wood. Workers used recycled steel and other green alternative materials to build the plant. A contractor brought in heavy equipment to furnish the road base by crushing stone and other materials taken from the site. 15 percent of all building materials were procured from nearby sources, a move aimed at reducing vehicle emissions.

    Balfour Beatty's safety record on the Vineyard project was solid: the Vineyard project made it through the entire three years without a single recordable injury.

    The results

    The Vineyard project is a model of care for the environment, Zero Harm, recycling and protection of endangered species. Balfour Beatty Infrastructure managed the project in a sustainable, earth-friendly manner, while benefitting the surrounding area with one of the most precious of all resources: drinking water.

    A bird of prey nest on the corner of the site forced the team to exercise caution and remain hundreds of feet away at all times. That care paid off: each year of the project, the hawks had hatchlings occupying the nest.

    50million gallons

    of water that can be treated per day

    75%

    of waste diverted from landfills to be recycled

    US$207million

    contract

    15%

    of building materials were procured from nearby sources

  • Kirkcaldy Victoria Hospital, Scotland

    Kirkcaldy Victoria Hospital, Scotland

    Providing a welcoming environment for visitors and patients.

    Kirkcaldy Victoria Hospital’s £170 million new wing was delivered via a Balfour Beatty-led PPP under which we managed the funding, constructed the asset and will provide facilities management until 2041.

    We completed the construction on time and on budget with zero snags. We saved time and cost through offsite prefabrication (including 273 en suite toilet pods) and baling segregated waste onsite to sell for recycling instead of paying for landfill.

    The new hospital provides vital new capacity for NHS Fife, including 11 operating theatres, renal, maternity delivery, children’s and A&E facilities.

    It is designed to provide a welcoming environment for visitors and patients, with bright and spacious wards containing more than 50% single rooms. In the children’s ward, special curtaining enables children to transform their bedded bays into beach huts. A dedicated basement corridor helps keep maintenance traffic away from clinicians’ and visitors’.

    “I am delighted to accept the keys to the new wing - a facility which will provide a lasting healthcare legacy for the people of Fife, benefitting not only our patients today but the generations to come.”

    Ben Conway

    Vice Chairman, NHS Fife

    2million

    hours worked over 650 days without a reportable accident

    53,000m2

    clinical area, with 50km of pipework created

    2,000

    rooms including 11 operating theatres

    360

    beds in 20 wards, with 31 clinical departments

  • Texas A&M University

    Texas A&M University

    Working together in the growing student accommodation sector

    Not only our second student accommodation project between our teams and The Texas A&M University System, this £134 million project at the main campus in College Station is also our sixth student accommodation project in the US.

    The project is a collaboration between Balfour Beatty Campus Solutions as lead developer and our US Construction business as construction partner.

    The new development will be delivered in two phases and will feature apartment and traditional residence hall designs for the university’s west campus.

    Over the past few years, we have established a strong presence in the student accommodation market in both the UK and the US, meeting our clients’ needs by combining our investment, construction and maintenance capabilities.

    “Investment in student accommodation is expected to continue over the next few years on both sides of the Atlantic, with $1 billion of new projects coming to market in the USA and a pipeline of around £1 billion of new projects anticipated in the UK. Our progress so far demonstrates that we are well-placed to maximise on these opportunities as they come to market.”

    Ian Rylatt

    Chief Executive Officer, Balfour Beatty Investments

    Selected for project, 25 September 2013: Read full news release

    Financial close for phase one, 20 June 2014: Read full news release

    2,488

    beds incorporated in the proposed development

    900,000

    gross square feet of proposed development

  • Patapsco Wastewater Treatment Plant

    Patapsco Wastewater Treatment Plant

    Constructing the world’s largest fixed film denitrification system

    Chesapeake Bay is the largest estuary in the US, a complex ecosystem that supports a wide range of fish and shellfish. But the Bay, and its marine inhabitants, are suffering badly from pollution.

    The main cause is nutrient-rich effluent, which the Environment Protection Agency (EPA) wants to see cut by 20-25%. Our projects, including constructing the world’s largest fixed film denitrification system, an enhanced nutrient removal facility, a biological aerated filter building and pump station, as well as leading utility works for the project will help the city reach local environmentalists’ target of making Baltimore Harbour more habitable for marine life by 2020.

    Our three projects to upgrade Baltimore’s Patapsco wastewater treatment plant will vastly improve the surrounding environment and the city’s outflows into Chesapeake Bay.

    They will ensure that the discharge of nutrients – nitrogen and phosphorus – into the Patapsco River meets the ‘pollution diet’ introduced by the EPA.

    And they are helping to establish us – through our Fru-Con business – as one of the leading water and wastewater players in the US market.

    80%

    reduction in nitrates achieved by the new plant

    100,000tonnes

    of chromium-laden soil eliminated by our works

    US$269m

    total value of our three Patapsco projects

  • Olympic Stadium transformation

    Olympic Stadium transformation

    We transformed the iconic former London Olympic stadium into a multi-purpose sporting venue

    Using complex engineering techniques, we reinvigorated the stadium after the London 2012 Olympic Games, transforming it into a modern venue for a range of sports events.

    The stadium is now also the home of West Ham United FC. To ensure it was suitable for football fans, we expanded the original roof to cover some 60,000 supporters. We installed the world’s heaviest cantilever roof, which is twice the size of the original, as well as incorporating the iconic lighting towers into the new structure.

    We used sustainable construction methods to transform a facility that was only ever designed as a temporary stadium, reusing over 6,000m of cable, 3,800 lights and 1,000 mechanical and electrical components. We also included 19,000 tonnes of recycled demolition material into the project. The stadium has since received a BREEAM 'Excellent' certificate.

    At its peak, the project employed over 1700 people on site with a total of 3.4 million man hours worked. Balfour Beatty Ground Engineering also installed 350 mini piles to support the increased load on the new foundations, saving of over £500,000 and 400 tonnes of carbon dioxide.

    The project boosted the local economy through the use of businesses nearby. We created 50 local apprenticeships in a range of trades as well as 10 work placements and over 300 training opportunities.

    Read the full news release

    Watch the short film below about the roof conversion...

    Watch the short film below about the overall stadium transformation...

    45,000m2

    size of new cantilever roof

    84m

    the stadium’s roof at its deepest point

    6,000m

    of cables recycled

    14

    lighting towers

  • North East Lincolnshire Partnership

    North East Lincolnshire Partnership

    Establishing a ground-breaking partnership that’s a bold step beyond traditional outsourcing

    A bold step beyond outsourcing

    We broke new ground by launching a partnership with a local council that crosses traditional outsourcing boundaries.

    Under a £250m, 10-year contract with North East Lincolnshire Council we will delivered a package of services spanning regeneration, highways, transport and planning, asset management and architectural support.

    "The partnership will deliver 3,500 new and improved homes, cut deaths and injuries on our roads by 33% and 50% respectively, secure at least £570m of inward investment into the borough and deliver key regeneration projects."

    Marc Cole

    Director of Regeneration, North East Lincs Council

    As well as cutting costs and improving services, we have committed to meeting 140 KPI targets that add up to a significant improvement in quality of life for local people. Our risks and rewards link directly to how well we succeed.

    Integration is key. Both parties are incentivised to work together to maximise results, and over 300 council staff have transferred to a team that integrates expertise from our facilities management business and Parsons Brinckerhoff.

    "It's a fantastic opportunity to accelerate regeneration of the borough. Balfour Beatty is working with North East Lincolnshire Council to create 4,200 new jobs and generate 250 training, work or apprenticeship placements."

    Caroline Hopkins

    Balfour Beatty

    4,200

    new jobs

    £570m

    of inward investment secured

  • Morpeth Flood Alleviation Scheme

    Morpeth Flood Alleviation Scheme

    Using our expertise in flood defence to protect UK homes.

    In December 2014, we completed a £21 million flood alleviation project for the Environment Agency and Northumberland County Council.

    The town of Morpeth in Northumberland, UK, has a long history of flooding, located in the floodplain of the River Wansbeck. The Morpeth Flood Alleviation Scheme was designed to protect the town from the level of flooding experienced in 2008 when over 1,000 homes and businesses were flooded.

    To protect the residents’ properties, we built an upstream storage dam and a new earth embankment to store 1.4 million m3 of flood water. We also constructed flood defence walls throughout the town centre, installed flood gates and raised roads.

    “The work at the dam is really impressive. We have exceeded 170,000 hours without a lost time injury - it doesn’t get much better than that, especially when you look at the challenging work being completed. At the dam for example, we are working 8-9 metres in the air, concreting and installing large steel work.”

    Anthony Myatt
    Project Manager, Environment Agency

    Related video content:

     

    1,000+

    properties protected

  • M25 Motorway widening

    M25 Motorway widening

    This £6.2 billion project saw an extensive programme of road widening and improvements to increase capacity and enhance safety and reliability of one of Europe's busiest motorways.

    The M25 carries more than 220,000 vehicles per day on some sections. In May 2009, the Highways Agency (now known as National Highways) awarded Balfour Beatty a 30-year Design, Build, Finance and Operate (DBFO) contract to manage the M25 and its key arterial link roads.

    The scope of works included routine maintenance, the delivery of lifecycle works and improvement schemes, constructing 62km of motorway widening prior to the 2012 Olympic Games and a further 46km of Smart motorway.

    The Smart motorway upgrades enable the hard shoulder to be used permanently as an extra running lane improving the reliability of journey times. The works included the installation of new infrastructure and technology including motorway spanning gantries, a contiguous piled retaining wall installed by Balfour Beatty Ground Engineering, refuge areas, emergency telephones, overhead signals, verge mounted signs and CCTV cameras.

    The final section of roadworks was completed fourteen weeks ahead of schedule following the earlier completion of Junctions 23 to 25 in Hertfordshire, and Junctions 5 to 7 between Kent and Surrey - which also opened twenty-two weeks ahead of schedule in the spring of 2014.

    The early completion was achieved through the extensive use of Building Information Modelling (BIM), which enabled the early detection of design issues while at the same time providing the customer, the Highways Agency, and stakeholders, such as Network Rail, with real-time information on design and implementation.

    Balfour Beatty continue to work in a joint venture with Skanska on the motorway at Junction 30 to improve capacity and traffic flow.

    Today, Balfour Beatty works alongside Atkins and Egis to operate and maintain the whole M25 under the ConnectPlus brand. As part of the consortium’s maintenance of the M25, a custom-designed, vehicle-mounted vacuum litter picker was developed by our in-house team. The new machine is more efficient and helps to keep our workforce safe by removing the need for litter picking by hand.

    Related content:

    Balfour Beatty's patented King Sheet Piling system was used extensively during the M25 widening and has since gone on to be incorporated in many of our Smart motorway contracts. Find out more in the short film below.

    30 years

    contract length

    £6.2bn

    contract value

    5,000m3

    of landfill removed from the entire site

    116km

    of the M25 through Kent, Surrey, Essex and Hertfordshire improved

  • London Power Tunnels

    London Power Tunnels

    London accounts for 20% of the UK's energy use and demand is steadily rising

    The background

    In 2013, Balfour Beatty began to install high voltage electricity cables for National Grid's London Power Tunnels project.

    This project will rewire the capital via deep underground tunnels, in order to ensure London’s electricity needs continue to be met and to ensure the city can access the renewable energy sources of the future. It will connect several substations around the city via tunnels up to 60 metres below the surface.

    Putting power cables in tunnels also means that future maintenance and network expansion operations can be carried out with minimum disruption. Electricity cables in cities are traditionally buried in ducts just below the road surface, so fault repair or cable upgrades often cause lengthy delays for road users.

    The challenge

    We are investing in training in order to grow a sustainable, long-term workforce, at the same time as developing innovative new technologies to ensure our people stay safe.

    The measures

    Working with the Tunnelling and Underground Construction Academy in Ilford, East London, we are helping to address the resource challenges facing the power industry by offering local unemployed people training in tunnelling and the opportunity to work on this important infrastructure project.

    Our patented Tunnel Cabling Machine (TCM) technology is another vital part of our approach to cable tunnel projects. The TCM has revolutionised the process of installing high voltage cables within tunnels by - driving out risk and vastly increasing the speed, efficiency and quality of installation. On previous projects, this technology has reduced project timescales by a third and has carried the longest single-length cable-pull in Europe – 1.2km.

    The benefits

    The London Power Tunnels project reaffirms Balfour Beatty's position as one of the world's leaders in tunnel cable installation, a sector which is likely to grow as developing economies continue to invest in new approaches to infrastructure.

    London Power Tunnel 2

    In 2021, Balfour Beatty was awarded the second phase of this ambitious scheme to rewire London and connect with the capital. The £52 million contract will include installing 200km of 400kV cables within a 32.5-kilometer tunnel network, deep below the ground between Wimbledon and Crayford.

  • London Aquatics Centre

    London Aquatics Centre

    We delivered a world-class aquatics venue, ensuring a lasting Olympic legacy

    Balfour Beatty constructed the iconic Aquatics Centre for the London 2012 Olympic Games, creating the competition pool, diving pool and the training pool, as well as a range of visitor facilities.

    During the games, the building accommodated 17,000 spectators. It was then transformed into legacy mode, reducing the number of seats to 2,500 and ensuring the facility is suitable for a variety of uses in the future. It is now open to the public as a world-class aquatics venue.

    The eye-catching sweeping roof, which is 160m long and 95m wide at its widest point, is an innovative 2,800 tonne steel structure with a striking and robust aluminium covering resting on three supports that measure just 1m2. The building is supported by 1,500 CFA piles, installed by our in-house piling team Balfour Beatty Ground Engineering.

    Going for gold

    The Aquatics Centre achieved the highest BREEAM score in the Olympic Park (73.67% Excellent) and we were the only contractor to receive a BREEAM innovation credit.

    We reused recycled aggregates in the permanent works, achieving 51% recycled content and saving approximately £1,000,000. The venue’s impact on the environment us further reduced by using renewable energy, sustainably sourced building materials and reusing pool water to flush the toilets. We delivered 56% of total materials by rail or water.

    Wherever possible, reuses for materials were found including using the steel terrace to build a permanent grandstand at the Gulfstream Park racecourse in Miami, Florida and reusing two water tanks in the village of Cheptiret in Kenya to provide clean water for over 4,000 people.

    Our awards
    • 2009 Newham Education Business Partnership – In recognition of outstanding support given to the partnership and the young people of Newham
    • 2009 & 2010 SHELT – Most Effective Training
    • 2009 Olympic Delivery Authority HSE Award – Best Waste Management
    • 2010 Olympic Delivery Authority – Diversity Awards – Best All Round Company Contribution
    • 2010 Olympic Delivery Authority – Health, Safety & Environment Awards – for exemplary standards in Health, Safety and Environment
    • 2010 SHELT – Winner Best Project
    • 2011 & 2012 Considerate Constructor’s National Site Award – Gold Awards, Runner-up Most Considerate Site (2012)


    ‘’The Olympic Delivery Authority’s approach to the London 2012 programme and their sustainability targets set new benchmarks for the construction industry. This helped all of us improve our systems and make our people and our suppliers believe that addressing sustainability through design, procurement and construction phases is a collective responsibility.” 

    Stuart Fraser
    Project Director, Balfour Beatty

     

     

    73.67 %

    BREEAM score

    First

    contractor on the park to bring in materials by barge

    27

    local schools helped to achieve their curriculum objectives, winning a diversity award from ODA

    Nine

    awards won

  • Institute of Technical Education, Singapore

    Institute of Technical Education, Singapore

    Delivering finance, design and life cycle support for educational facilities – a first for South East Asia

    A ground-breaking approach

    Gammon Capital and Balfour Beatty Investments worked with the Institute of Technical Education (ITE), Singapore to provide accommodation for more than 15,000 students and 630 staff as well as flexible and adaptable learning spaces to support ITE’s changing requirements.

    ITE chose Balfour Beatty for its Group-wide experience in designing and delivering privately-financed educational facilities. It was the first major project for Gammon Capital, which pre-qualified for the project in 2006 and was appointed preferred bidder in late 2007.

    The ground-breaking project, worth S$270M and expected to last 27 years, is the first of its kind in South East Asia

    The building is being built and managed using the PPP model developed in the UK, and was recognised with an award as Project Finance International’s Asia Pacific PPP Deal of the Year 2008. Gammon Capital worked closely with Balfour Beatty Investments while developing the bid, collaborating on all elements of project finance, commercial, design and life cycle support.

    The project has enabled the sharing of expertise both within Gammon and its joint owners, Balfour Beatty and Jardine Matheson.

    Community engagement and a focus on hospitality are central to ITE’s vision. The campus will include facilities such as retail outlets open to the public, many of which will be staffed by students.

    The project has presented many challenges for the design and build contractor, Gammon Pte Ltd. The project team of 140 staff has supervised the placement of 110,000 cubic metres of concrete and 12,000 tonnes of rebar. The workforce reached 1,700 personnel at peak.

    The design has set new benchmarks in energy efficiency and has been awarded “Platinum” grade (the highest available) under the Singapore Government’s environmental performance scheme. The design also features a 3,300 sqm tensile fabric roof, one of the largest of its kind in the world.

    140

    people in the project team

    3,300sqm

    tensile fabric roof

  • Herefordshire Council Public Realm Services

    Herefordshire Council Public Realm Services

    Delivering key frontline services for Herefordshire

    Our 10 year, £200 million Herefordshire Council UK Public Realm contract covers highways maintenance and improvement works, street lighting and street cleaning, as well as responsibility for public rights of way, parks and open spaces.

    Delivering a sustainable customer focused service

    We will improve the condition of Hereford’s highways and be responsive to local needs and priorities. Through developing sub-contracting and supply chain opportunities, we will also contribute to the regeneration of the local economy.

    Our commitment to putting customers first, understanding and responding to their needs, helps us deliver excellent services and value for money.

    The outcome? Roads and footways will be safe, clean and uncongested, public rights of way will be accessible, safe and appropriately maintained, and parks and public spaces will be well-planned, attractive and accessible.

    Read the full news release

    55tonnes

    of salt spread on roads across the county each night as part of winter maintenance

  • Heathrow Airport Terminal 2 departure lounges

    Heathrow Airport Terminal 2 departure lounges

    Working together to build a more sustainable Heathrow

    At Heathrow, we combined design, construction, ground engineering, specialist mechanical and electrical expertise to create the Terminal 2 departure lounges, delivering a satellite building that is linked to the main terminal through an underground tunnel.

    At £592 million, constructing the new lounges was one of the largest airside projects in Heathrow’s history and now provides pier-served tunnel links to the main Terminal 2. Balfour Beatty's integrated approach enabled our customer to open three aircraft stands three months early, helping them to ease stand congestion.

    Off to a flying start

    Working in close collaboration with our customer and supply chain partners, the project team achieved a £10 million saving and a reduction of five weeks in the schedule on the substructure package by using Building Information Modelling. Phase 2 was completed on programme, increasing capacity by a further 10 new stands which are capable of receiving A380 jets.

    We brought together a range of in-house expertise to successfully deliver the project. We prefabricated the plant room and other mechanical and electrical components at our off-site Off-site Solutions facility. This allowed us to deliver Phase 1 ten weeks ahead of schedule, removing 115,000 hours of work from site and mitigating safety risks by reducing hot works. Our in-house piling business, Balfour Beatty Ground Engineering, installed over 2km of diaphragm walls, 700 piles and 160 plunge columns to support the new terminal building.

    “Balfour Beatty is one of those companies who routinely looks for ways to make things better. From what I have seen innovation and safety are clearly embedded in the Balfour Beatty culture.”

    Steve Morgan
    Capital Projects Programme Director, Heathrow Airport Ltd (Formerly BAA)

     

    Related video content:

    £592m

    contract value

    40%

    more carbon-efficient than the old building

    14

    new stands capable of receiving A380 aircraft

  • Gas Distribution Strategic Partnership

    Gas Distribution Strategic Partnership

    Two regional partnerships to renew and improve gas networks

    Balfour Beatty was appointed by Cadent (formerly National Grid) to replace aging metal pipes, service connections and build new mains in the North West of England and West Midlands from 2013 until 2021.

    Our commitment to efficiency, innovation and customer service was fundamental to the delivery of this contract. Project deployment was delivered at scale, which involved over 400 new commercial vehicles, 1,500 pieces of plant and 14,000 metres of site barriers.

    Over eight years, we successfully serviced 541,000 properties, handled 123,000+ customer enquiries and replaced or repaired 5,729 km of gas mains.

    Safe and efficient delivery

    The team developed a new way of working which reduced the number of excavations to dig by up to 75%, making the works safer and more efficient. This involved creating a new pipe within an existing pipe by mixing a base material and activator to form a resin lining within the old pipe. In addition, an innovative new pipe cutting tool was utilised to help reduce the risks involved in the excavation process.

    £1.2billion

    contract

    541,000

    properties serviced

  • Chester gas network

    Chester gas network

    Modernising the gas distribution network in a historically important town

    Pipes renewed, past intact

    In partnership with Cadent (formerly National Grid), we were responsible for maintaining and renewing the gas distribution network in north-west England. This included replacing over 500km of obsolete large-diameter pipes each year.

    We replaced the old cast-iron network in the historic town of Chester. In the town centre, the great majority of buildings are Grade 1 and Grade 2 listed: many are of national importance.

    We needed to work with sensitivity to our surroundings – and to a busy calendar of tourism and heritage events.

    We worked closely with English Heritage to secure planning permission for pipe runs into buildings. We also had a full-time archaeologist on site to identify and protect the wealth of artefacts unearthed by our digging.

    500km

    of pipes replaced

    Grade1listed surroundings

    Victorian metal pipes are being replaced with plastic throughout Chester

  • Carl R. Darnall Army Medical Center Replacement

    Carl R. Darnall Army Medical Center Replacement

    Bringing together clinical effectiveness, energy efficiency and patient comfort in a state-of-the-art hospital

    State-of-the-art building

    In September 2010, our joint venture was selected to design and build the US$503m (£325m) Carl R. Darnall Army Medical Center Replacement for the US Army's Fort Hood base in Texas.

    This state-of-the-art medical centre for one of the largest military bases in the US is the largest project backed by the US Government's economic stimulus programme.

    We are a proven team: five members of our team have already collaborated on the outstanding Walter Reed National Military Medical Center in Bethesda.

    Building on that experience, we have worked closely with project stakeholders to design a world-class facility that combines clinical effectiveness and energy efficiency with stress reduction and comfort for patients and visitors.

    The medical centre is designed to meet the LEED Gold standard for environmental performance.

    In the US, we are ranked as a Top 10 Green Builder. The new medical centre is designed to meet the internationally recognised LEED Gold standard for environmental performance. A few unique savings for this facility realise:

    • 100% outside air in the climate control system to minimise the risk of cross-infection
    • Approximately 33.5% in energy savings annually
    • Approximately 45% in annual water consumption savings over the LEED baseline

     

    33.5% energy savings

    Top 10 green builder

  • Blackfriars Station

    Blackfriars Station

    We helped to relieve one of the UK’s busiest rail routes, creating a vital link through central London.

    Changing trains

    We modernised Blackfriars Railway Bridge and its outdated station, bringing this popular route into the 21st Century.

    The Thameslink line runs through London from Bedford to Brighton. Linking two airports, two major London rail termini and nine London Underground stations, it's one of the UK's busiest rail routes. The line is vital for keeping London on the move.

    Originally built in 1886, the railway bridge required extensive works to ensure it was able to keep up with passenger demand. We widened and strengthened the structure, building a new station across it with realigned tracks and new covered platforms spanning the River Thames. A new southern entrance gives passengers access from the south of the river for the first time.

    We delivered a range of civil engineering, demolition and strengthening works on the bridge itself plus the initial piling and ground engineering work for the new station building. Our in-house piling business, Balfour Beatty Ground Engineering, installed over 700 bored piles (up to 40m deep) and micro piles, including a king-post retaining wall, close to live underground trains. Our crane hire business BPH Equipment supplied crawler cranes for the bridge deck works.

    The new station has 250 metre platforms which can receive longer 12-carriage trains (8-carriage previously) and up to 24 of them per hour.

    The station remained open throughout the programme to minimise disruption for passengers. We did much of the work at night and over weekends and holidays, while causing as little disturbance to neighbours as possible. 300,000 people passed through the live construction site by road, rail, underground and river every day.

    Our Balfour Beatty Kilpatrick business were responsible for fitting over 4,400 solar panels (covering 6,000 square metres) to the roof of Blackfriars station, creating both the biggest solar bridge in the world and the largest solar array in London.

    The project followed on from the success of our £115 million project to build the new underground northern ticket hall at King's Cross St Pancras. London Mayor Boris Johnson described our work there as "the standard by which all new station developments should be judged."

    9 metres

    of extra bridge width

    2000

    workers on site at peak

    900,000 kWh pa

    solar power generated by the roof

    14,000 tonnes

    of material transported by barge

  • Forth Bridge

    Forth Bridge

    At 1.5 miles long, Forth Bridge is the largest rail structure in Scotland and carries both passenger and goods trains over the Forth Estuary.

    For the first time in the bridge’s history, we undertook the huge task of painting the entire 53,000 tonne bridge, which stands 110 metres above the Estuary. The works were delivered by a workforce of approximately 400 people whilst the bridge remained in use with up to 200 train movements a day.

    The unique restoration works were carried out in partnership with Network Rail and was one of the largest tasks of its kind. The team used innovative scaffolding techniques, encapsulation methods and a high tech three coat system - commonly used in the offshore oil industry.

    The restoration project, completed in 2012 returned the bridge to its original condition. Today, we continue to deliver maintenance works on the bridge.

    Charitable donations

    In partnership with Network Rail, Balfour Beatty has helped to raise over £222,500 for the children’s charity Barnardo’s Scotland, which supports children and young people locally in Fife, Edinburgh and more widely across Scotland.

    ‘Your View 19’, a unique fundraising event held at the iconic Forth Bridge, has enabled thousands of people from across the world to ascend the UNESCO World Heritage Site.

    240,000

    litres of paint applied to the surface of the bridge

    £222,500

    raised in charitable donations

  • Birchwood Pinch Point

    Birchwood Pinch Point

    We helped to ease traffic congestion to make Birchwood Park appealing for businesses, visitors and residents.

    Warrington Borough Council needed to reduce congestion around the 'Birchwood Cluster' to help attract new businesses and jobs to the area. To support this, they enlisted Balfour Beatty via the Scape Civil Engineering framework to deliver strategically important works at Birchwood Pinch Point.

    The project involved the upgrade of two existing roundabouts to increase road capacity and ease congestion for the 10,000 vehicles that enter Birchwood Park each day. A new bus only link, with ANPR cameras, was incorporated in to the scheme to improve the efficiency of the bus service that ran between Birchwood rail station and the Birchwood Enterprise Zone.

    Alongside improving access to the Enterprise Zone, local employment and investing spend back into the local community was a priority for the Council. Recognising this, we developed our delivery strategy to realise 90% of the supply chain spend on the project was with local small and medium sized enterprises and £1.5m of spend was invested locally.

    The success of the phase 1 project led to Growth Deal funding being awarded for a phase 2 project which commenced in early 2019.

    366

    school pupils engaged

    £1.5million

    of spend invested locally

  • Foundry Courtyard Student Accommodation, Glasgow

    Foundry Courtyard Student Accommodation, Glasgow

    This 536-bedroom development provides modern, stylish accommodation for students of the nearby University of Strathclyde, City of Glasgow College and Glasgow Caledonian University.

    The development offers a range of accommodation types including 2-6 bedroom clusters and 149 studio flats. To complement the accommodation, other facilities include a gymnasium, cinema room, study pods, social space with a games area and a retail unit. There is also a large secure courtyard which can be used by students for recreational purposes.

    A full infrastructure lifecycle solution

    Drawing on our extensive infrastructure expertise, Foundry Courtyard was our first ‘direct let’ student accommodation development. As developer of the project, we secured funding, completed the site purchase, planning, design and construction works and are now operating the accommodation. All funding and finance for the scheme has been provided by Balfour Beatty.

    Wide ranging construction capability

    New technologies to ensure the safety of our workforce were adopted during project delivery, including:

    • SiteZone Proximity Warning System - to reduce the risk of vehicle – pedestrian collisions, the system uses radio frequency technology to alert the machine operators of pedestrians near their vehicles
    • Crane Hook Camera System - a wireless camera system on the crane hook was installed to improve visibility for crane operators

    The delivery of the project drew on the wide-ranging capabilities of Balfour Beatty. This included works being delivered by Balfour Beatty Ground Engineering, our piling and ground improvement specialists, and our mechanical and electrical specialists – Balfour Beatty Kilpatrick.

    To make sure works progressed during the wettest winter on record, we used tents, gazebos, and temporary metal sheeting to allow work to progress safely.

    536

    Bedrooms

    79%

    workforce recruited locally

  • Vine Street, London

    Vine Street, London

    Vine Street is a mixed-use development on the eastern boundary of The City of London, near to Fenchurch Street and Aldgate stations.

    The project will deliver 654 student bed spaces across a 14-storey building that fronts onto Vine Street; a six-storey student accommodation building adjacent to Crosswall; a 12-storey student accommodation building that fronts onto Crutched Friars and a 12-storey office building situated to the north of the scheme on India Street.

    The ground floor of the largest building accommodates the student and office entrance and reception areas, additional office spaces, utilities, loading bay and substation. Beneath the building footprint is a two-level basement that occupies the entire site. The basement accommodates incubator office space, bin stores, bike stores, plant, a café and an exhibition space for The Museum of London’s historic Roman Wall remains.

    The Outstanding BREAMM rated project is striving for the highest levels of sustainability. It includes a combined heat and power (CHP) based central heating and hot water system serving the entire development, meaning that all heat that may be lost can be recycled to heat or cool the building. The roof also has photovoltaic panels to help lower running costs and power the building sustainably.

    £85 million

    project value

    654

    student bed spaces

  • Southampton Highways Service Partnership

    Southampton Highways Service Partnership

    Balfour Beatty Living Places and Southampton City Council have created an award winning, collaborative and trusted partnership to deliver public realm works across the city.

    The partnership plays a vital role in delivering the vision of a “Connected Southampton” and a greener city. Together, our works have included significant steps in constructing the Southampton Cycle Network, investing in innovative green infrastructure and securing government funding to help make the City a cleaner, greener, healthier, more sustainable and attractive place to live, work and visit.

    A greener future

    At Millbrook Roundabout, Balfour Beatty Living Places helped deliver the first hydroponic living wall on a highways scheme. The wall is a sustainable, vertical installation containing living plants and foliage which grow without the need for soil. Offering many benefits to the public and the environment, these green and living structures help to remove air pollutants through the absorption of gases such as Carbon Dioxide.

    An award-winning partnership

    The scheme was recognised at the Association for Public Service Excellence awards, being awarded the Best Public / Private Partnership Working Initiative. Our digitally focused approach led the team to success in identifying, trialling and implementing systems and technological innovations such as 3D laser scanning and BIM to support and enhance the delivery of Highways services.

    1st

    hydroponic living wall on a highways scheme

  • Monkton Flood Protection Scheme

    Monkton Flood Protection Scheme

    Our multi-agency approach helped protect homes and businesses from surface water flooding.

    A survey undertaken by South Tyneside Council and Northumbrian Water identified approximately 100 properties in the Monkton and Hebburn areas as ‘at risk of flooding’ in the next 75 years.

    Hebburn South is predominantly a residential area with large open areas. Some form of flooding, either sewer or surface water, has been reported each year since records began.

    In 2012, 113 properties were affected by significant flooding in the area with roads being impassable for several hours. Via the SCAPE Civil Engineering framework, the council commissioned Balfour Beatty to complete essential surface flood protection works, this included:

    • Installation of new highway drainage
    • Installation of swales to catch surface run off
    • Creation of retention basins

    Modelling of potential storm durations and event scenarios were developed to ensure the design options mitigated risks. The options for reducing flood risk were based on the principles of reducing surface water inputs, storing and slowing the flow of both the surface water and fluvial flows, and using swales to intercept overland surface water.

    Adopting a multi-agency approach

    To better protect the homes and businesses in the areas identified, we adopted a multi-agency approach by combining it with a with a Living Waterways scheme to re-surface a previously buried section of the Bede Burn water course. By working collaboratively, the team were able to create a larger, more attractive wildlife area.

    Through this early contractor involvement and collaboration with the customer, designers and all agencies, we were able to identify and deliver approximately £550,000 worth of cost savings.

    In June 2019 the scheme was awarded a Sustainability award at the Flood and Coast Project Excellence Awards.

    Creating wild-life rich spaces

    As well as providing residents with peace of mind, the area has also benefited from an enhanced wildlife rich green space which residents were actively involved in creating.

    The use of natural flood protection measures, such as tree planting, and creating natural habitats i.e. wetlands, helps reduce the impact of flooding, whilst creating fewer carbon emissions compared to more traditional methods.

    100%

    supply chain spend with SMEs

    98%

    of waste materials diverted from landfill

    8

    job opportunities created onsite

  • Anglian Water @one Alliance

    Anglian Water @one Alliance

    An award-winning partnership delivering Anglian Water’s capital investment programme, serving almost seven million people in the East of England and Hartlepool.

    In 2005, Balfour Beatty became a founding member of Anglian Water’s @one Alliance. The alliance has been building industry-leading success since its conception, bringing together the very best from its seven partners. It is seen as one of the world’s leading alliances and a top performer in the water sector.

    The partners consist of Anglian Water Asset delivery, Balfour Beatty, Barhale, MMB, MWH Treatment, Skanska and Sweco. Together, we deliver more than half of Anglian Water’s capital investment programme.

    Our works include the restoration or assembly of new water treatment works and water recycling centres, as well as replacing and providing essential infrastructure pipework to support both water and wastewater distribution.

    We successfully delivered a £1.2 billion programme in AMP6 whilst continuing to build greater integration and collaboration with Anglian Water, our partners, and supply chain; enabling us to deliver further efficiencies, lower carbon solutions, improved customer service, and most importantly, a healthier and safer working environment.

    In AMP7, the partnership will design and deliver approximately 1,200 projects worth £1.7 billion.

    Innovations

    By utilising innovative technology such as pipebusting, sliplining, spray lining and directional drilling, making use of the existing ‘the hole in the ground’, we have been able to deliver both efficiencies and carbon reductions.

    Using the most innovative installation techniques, we worked collaboratively with the customer to develop a unique, enhanced customer experience throughout the contract to ensure customers had a reliable water supply.

    The @one Alliance project has won a number of awards, which include:

    • Silver and Bronze RoSPA Awards
    • Water Industry Achievement Carbon Reduction Initiative of the Year Award
    • The Peer Award for Excellence
    • The Energy Institute’s Environmental Award

    7

    industry-leading partners

    £1.2billion

    of works delivered in AMP6

Load more
Back to top

Share iconShare this page

  • Facebook
  • Twitter
  • LinkedIn

Balfour Beatty plc logo Balfour Beatty plc logo

Balfour Beatty plc is registered in England as a public limited company

Registered No: 395826
Registered Office: 5 Churchill Place,
Canary Wharf, London E14 5HU

Find a contact

© Balfour Beatty 2023

  • Search
  • Site index
  • Help
  • Accessibility
  • Privacy
  • Cookies
  • Legal
  • Modern slavery
  • Fraud warning
  • Carbon Reduction Plan

@balfourbeatty

Today we’re proud to announce Balfour Beatty Investments’ entry into the on-street electric vehicle (EV) charging market with the formation of Urban Fox – a partnership with @urbaneleclondon, a British EV chargepoint operating company! Find out more: https://t.co/3nN8oz9kWI https://t.co/A1qU70hcFc

Mon, 27 March 2023 10:14

We’ve gone all electric at our Zero Carbon Construction Site! Recently, we trialled a fleet of all electric plant at the Edinburgh Biomes project. Learn about our findings from our Sustainability Director, Jo Gilroy, in our latest diary update: https://t.co/azkGZUD4Mw https://t.co/q23LYnOEOh

Fri, 24 March 2023 09:10

Congratulations to our in-house structural specialists, Balvac, who have scooped up the Royal Society for the Prevention of Accidents @RoSPA) Order of Distinction Award in recognition of 24 consecutive annual Gold Awards for outstanding health and safety performance! #zeroharm https://t.co/DZa1VEjPUh

Wed, 22 March 2023 15:38

Find out how you can shape a career with us – https://t.co/FfqbQ0BFPS #ShapeEverything #ExpertEngineers #BuildingNewFutures

Tue, 21 March 2023 16:57

We’re at the beating heart of society, providing the critical infrastructure we all rely on every day and projects at the heart of local communities. We shape the world around you and breathe new life into the places where you live, work and play. https://t.co/k73xLkkYFq

Tue, 21 March 2023 16:57

We’ve reached yet another major milestone at our #HinkleyConnectionProject - successfully energising 36 of the world’s first T-pylons which will eventually connect six million homes and businesses in the South West to low carbon energy. Find out more: https://t.co/zK5SHn4Uhj https://t.co/F4qvlSE3Ap

Tue, 21 March 2023 13:05

Connect with us

  • Facebook
  • Twitter
  • Youtube
  • LinkedIn
  • Instagram

Email updates