

Derby University Case Study



### Why go 'Green'?

- Legislation
- Brand enhancement
- Staff influence
- Customer expectation
- Existing publicly stated commitment
- Financial 'benefits'
- Incentives
- An altruistic desire to act responsibly
- Future proofing energy price volatility



### Why aspire to a 'rating'?

- Adds legitimacy
- Provides a framework
- Associated brand values e.g. RICS / Ska
- Benchmarking
- Future-proofing incremental improvement



### Which system to choose?

- What are you trying to achieve?
  - Tangible, measurable, independently assessed outcomes
  - Window dressing
  - Both
- Communication strategy
- Resource commitment
- In-House expertise



### What's Available?





### Which to select

| Framework             | Overview                                                                                                                                                                                                | Pros                                                                                                                                                                                            | Cons                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| BREEAM 2008 (Fit-Out) | <ul> <li>BRE initiative</li> <li>49 'Issues' across 9<br/>categories</li> <li>Links 'In-Use' to<br/>Construction</li> <li>Weighted Average<br/>basis</li> <li>Focus on Energy<br/>Management</li> </ul> | <ul> <li>Established</li> <li>Credible</li> <li>Construction focus<br/>(hard wired)</li> </ul>                                                                                                  | <ul> <li>Fit out a<br/>'development' of<br/>New Build</li> </ul>                                             |
| LEED CI               | <ul> <li>US Green Building<br/>Council initiative</li> <li>6 Themes</li> <li>4 Standards</li> <li>Weighted Average<br/>basis</li> <li>Design; Operation;<br/>Construct</li> </ul>                       | <ul> <li>Global brand</li> <li>Encourages<br/>Innovation in Design</li> <li>Regional Slant</li> <li>Widely adopted</li> <li>3<sup>rd</sup> Party<br/>accreditation -<br/>independent</li> </ul> | <ul> <li>US centric &gt; Global</li> <li>3<sup>rd</sup> Party<br/>accreditation -<br/>incurs fees</li> </ul> |



### Which to Select (cont.)

| Framework                   | Overview                                                                                                                                                                                          | Pros                                                                                                                                                                                          | Cons                                                                                                                                                                                                                              |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ska Rating                  | <ul> <li>RICS initiative</li> <li>On Line tool</li> <li>Assessor accredited</li> <li>104 'components'<br/>across 8 env. issues</li> <li>3 Ranks – gateway<br/>achievement<br/>required</li> </ul> | <ul> <li>Fit-Out dedicated<br/>approach</li> <li>Occupier centric <ul> <li>Cost of Use</li> </ul> </li> <li>Straightforward</li> <li>More flexible in<br/>achieving<br/>compliance</li> </ul> | <ul> <li>Limited global reach</li> <li>Relatively<br/>new/unknown</li> <li>Not fool-proof in<br/>preventing less<br/>sustainable practices</li> </ul>                                                                             |
| Ad-Hoc / Client<br>Selected | The client elects<br>which measures<br>matter, which<br>elements are most<br>relevant, which 'catch<br>their eye'                                                                                 | <ul> <li>Highly tailored - by definition</li> </ul>                                                                                                                                           | <ul> <li>No associated brand values</li> <li>Unstructured therefore lacks on-going rationale</li> <li>Tends to focus on 'novel' or 'trendy' technology - e.g. wind turbines</li> <li>Harder to demonstrate credibility</li> </ul> |



### **Selection Criteria**

- They are all, to an extent, flawed
  - Complex e.g. DECC 17sheet workbook...
  - 'Single' / 'Soapbox' Issue
  - Lack cohesive link between green impact v lifecycle cost v business case
  - Poor metrics/communication to facilitate easy, informed choice by inexpert decision makers
  - Smell like snake oil PV; wind turbines, feed-in tariffs



### **Selection Criteria (cont.)**

| BREEAM 2008 F/O Weighting |     | LEED Comm Int. Weighting           |     | Ska Measures |     |
|---------------------------|-----|------------------------------------|-----|--------------|-----|
| Managing                  | 13  | ?                                  | 0   | ?            | 0   |
| Health & Wellbeing        | 17  | Indoor Env. Quality                | 17  | Wellbeing    | 12  |
| Energy                    | 21  | Energy & atmos. (CO <sub>2</sub> ) | 37  | Energy Use   | 22  |
| Transport                 | 9   | Sustainable Sites                  | 21  | Transport    | 3   |
| Water                     | 7   | Water Efficiency                   | 11  | Water Use    | 12  |
| Materials                 | 14  | Materials & resources              | 11  | Materials    | 27  |
| Waste                     | 8   | Const. Waste Man.                  | 14  | Waste        | 18  |
| Pollution                 | 11  | ?                                  | 0   | Pollution    | 6   |
| Innovation                | +10 | Innovation & design                | +6  | Other        | +4  |
| ?                         |     | Regional                           | +4  | ?            |     |
|                           |     |                                    |     |              |     |
| Total                     | 110 |                                    | 110 |              | 104 |



### What does it cost? NPV Capex / Opex



### Not to Scale!



# Sustainability ... a collective responsibility

### Inherent Inertia...

- Cat A v Shell & Core the 40% 'Agency' effect
  - It is 'reported' that [up to] 40% of Cat A works are discarded at 'Cat B' phase (non attributable)
  - Compare 'WRAP' outline Waste 'Good Practice' savings of 0.35% - 0.53%
  - Implications on embedded Energy, Water, CO<sub>2</sub>.....
- Carbon/Water/Energy savings linked to Capex + Opex impact to mitigate the 'premium'
  - Poor metrics



### **Derby University Case Study**

- What is a 'Sustainable' project?
  - Ideally delivers **nett** improved energy, CO2 and water utilisation performance during the project execution, occupation and reinstatement phases
  - Is close to cost neutral or even cost positive over the lifetime of the project
  - Creates an improved environment for the building users and adjacent community
  - Does not impede the normal operations of the occupier as a result of 'sustainable' choices







### **Derby University Case Study**

- One of Four major schemes undertaken at Derby so far; one new scheme imminent
- Refurbishment of 3 'well used' 1960's tower blocks – driven by operational and aesthetic objectives
  - Green Theme 'to improve energy efficiency' 50% reduction
  - Refenestration 10,000 m<sup>2</sup> of replacement glazing
  - Full interior upgrade
  - Budget of £13.5M; 18 month programme
  - Includes additional £1M for 'alternative construction methods' to reduce noise
  - Executed under 'Considerate Contractors' programme
  - Heating systems upgrade to optimise achieved new U value performance







Derby University Case Study - additional 'Green' measures

- £266k investment...payback...
  - 1-5 years / outwith lifetime of kit
- 200 m<sup>2</sup> of Photovoltaic Cells
  - 19 kw/h generation capability
- 9 'roof borne' wind turbines
  - 9,4 kw/h
- 1 new 65 ft. tall ground based Wind Turbine
  - 3,05 kw/h
- green energy generated by the three projects will reduce carbon dioxide emissions by 18 tonnes p.a.

### **Balfour Beatty**







### Derby University Case Study - Outcomes

- 300% improvement in heat retention
- 250% improvement in solar gain reflection
- £150k per annum energy savings
- Shortlisted in the 2010 Times Higher Education Awards in the category of 'Outstanding Contribution to Sustainable Development'

"The towers project has vastly improved the look of the University's Kedleston Road site and, just as importantly, its energy efficiency.

lan Willgoose, Director of Estates







## Westborough Primary School





## Westborough Primary School

- £1.4 refurbishment project
- £500k grant from DCSF Zero Carbon Task Force
- Plans were based on children's vision for a sustainable future
- Part of Balfour Beatty's "Towards Sustainable Schools" research programme.
- Incorporated internal wall insulation, renewables, energy efficient technologies, rainwater harvesting, and water saving technologies into an Edwardian building.







## Westborough Primary School

| Design Solutions                                     | Annual CO <sub>2</sub> Savings |
|------------------------------------------------------|--------------------------------|
| Biomass Boiler                                       | 30 tonnes                      |
| Photovoltaic panels                                  | 7 tonnes                       |
| Energy efficient lighting/ICT & appliances           | 15 tonnes                      |
| Thermal insulation, double glazing & passive systems | 15 tonnes                      |
| Total                                                | 67 tonnes per annum            |



# Results

- Expected to achieve 66% savings in CO<sub>2</sub>kg/m<sup>2</sup>/annum
- Approx. 70% lower than similar schools
- Greatly improved comfort levels through improved insulation
- Enhanced learning environment for teachers and students
- Improved acoustics allow the assembly hall to be used as a community space generating income for the school.









#### Please contact Stewart Owen for further information:

stewart.owen@oplgroup.com

020 8704 6600